ОХНМНеорганические материалы Inorganic Materials

  • ISSN (Print) 0002-337X
  • ISSN (Online) 3034-5588

Влияние состава и пористости электродов Bi3Ru3O11–Bi1.6Er0.4O3 на импеданс симметричных ячеек электрохимического генератора кислорода с электролитом Bi2O3–B2O3

Код статьи
S30345588S0002337X25030142-1
DOI
10.7868/S3034558825030142
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 61 / Номер выпуска 3-4
Страницы
250-256
Аннотация
Исследован импеданс симметричных электрохимических ячеек с электролитом Bi2O3–0.12 мас.% B2O3 и электродами Bi3Ru3O11–Bi1.6Er0.4O3 от содержания Bi1.6Er0.4O3 и общей пористости электродов. Установлено, что при содержании не менее 40 мас.% Bi1.6Er0.4O3 в электродах формируется плотный слой на границе раздела электрод/электролит, который ингибирует процесс смачивания твердых электронпроводящих зерен Bi3Ru3O11 жидкой фазой из электролита. Показано, что ячейка с электролитом Bi2O3–0.12 мас.% B2O3 и электродами Bi3Ru3O11–40 мас.% Bi1.6Er0.4O3 с пористостью 30–40 об.% обладает наименьшей суммой омического и поляризационного сопротивлений, величина которой составляет 0.14 ± 0.01 Ом см2 при 740°C, стабильной в течение 5 ч.
Ключевые слова
электрохимический генератор кислорода чистый кислород керамические композиты пористые электроды
Дата публикации
17.02.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
23

Библиография

  1. 1. Dyer P.N., Richards R.E., Russek S.L., Taylor D.M. Ion transport membrane technology for oxygen separation and syngas producti- on // Solid State Ionics. 2000. V. 134. № 1–2. P. 21–33. https://doi.org/10.1016/S0167-2738 (00)00710-4
  2. 2. Anderson L.L., Armstrong P.A., Broekhuis R.R., Carolan M.F., Chen J., Hutcheon M.D., Lewinsohn C.A., Miller C.F., Repasky J.M., Taylor D.M., Woods C.M. Advances in ion transport membrane technology for oxygen and syngas production // Solid State Ionics. 2016. V. 288. P. 331–337. https://doi.org/10.1016/j.ssi.2015.11.010
  3. 3. Zhang Y., Xie K., Zhou F., Wang F., Xu Q., Hu J., Ding H., Li P., Tan Y., Li D., Zhu J., Zhao C., Lin S., Wu Y. Electrochemical oxygen generator with 99.9% oxygen purity and high energy efficiency // Adv. Energy Mater. 2022. V. 12. № 29. P. 2201027. https://doi.org/10.1002/aenm.202201027
  4. 4. Hua X., Zhou X., Du G., Xu Y. Resolving the formidable barrier of oxygen transferring rate (OTR) in ultrahigh-titer bioconversion/biocatalysis by a sealed-oxygen supply biotechnology (SOS) // Biotechnol. Biofuels. 2020. V. 13. P. 1–12. https://doi.org/10.1186/s13068-019-1642-1
  5. 5. Zhao X., Zhao J., Li D., Zhou F., Li P., Tan Y., Zhou H., Zhang Y., Lin S., Wu Y. Electrolyte-free electrochemical oxygen generator for providing sterile and medical-grade oxygen in household applications // Device. 2024. V. 2. № 9. P. 100360. https://doi.org/10.1016/j.device.2024.100360
  6. 6. Sun C., Hui R., Roller J. Cathode materials for solid oxide fuel cells: a review // J. Solid State Electrochem. 2010. V. 14. P. 1125–1144. https://doi.org/10.1007/s10008-009-0932-0
  7. 7. Lenser C., Udomsilp D., Menzler N.H., Holtappels P., Fujisaki T., Kwati L., Matsumoto H., Sabato A.G., Smeacetto F., Chrysanthou A., Molin S. Solid oxide fuel and electrolysis cells // Advanced ceramics for energy conversion and storage. Ed. Guillon O. N.Y.: Elsevier, 2020. P. 387–547. https://doi.org/10.1016/b978-0-08-102726-4.00009-0
  8. 8. Dergacheva P.E., Fedorov S.V., Belousov V.V. A high performance IT-EOG cell based on a solid/molten Bi2O3–B2O3 composite electrolyte // New J. Chem. 2023. V. 47. № 24. P. 11403–11407. https://doi.org/10.1039/D3NJ01687K
  9. 9. Levin E.M., McDaniel C.L. The system Bi2O3–B2O3 // J. Am. Ceram. Soc. 1962. V. 45. № 8. P. 355–360. https://doi.org/10.1111/j.1151-2916.1962.tb11168.x
  10. 10. Zhou W., Shao Z., Ran R., Chen Z., Zeng P., Gu H., Jin W., Xu N. High performance electrode for electrochemical oxygen generator cell based on solid electrolyte ion transport membrane // Electrochim. Acta. 2007. V. 52. № 22. P. 6297–6303. https://doi.org/10.1016/j.electacta.2007.04.010
  11. 11. Wang S.F., Chen Y.W., Hsu Y.F. Honeycomb oxygen-generator with doped bismuth-oxide-based electrolyte and Ag electrode // J. Electroceram. 2020. V. 44. P. 104–111. https://doi.org/10.1007/s10832-020-00202-x
  12. 12. Hong T., Fang S., Zhao M., Chen F., Zhang H., Wang S., Brinkman K.S. An intermediate-temperature oxygen transport membrane based on rare-earth doped bismuth oxide Dy0.08W0.04Bi0.88O2−δ // J. Electrochem. Soc. 2017. V. 164. № 4. P. F347–F353. https://doi.org/10.1149/2.1201704jes
  13. 13. Загайнов И.В., Федоров C.В., Лысков Н.В., Кульбакин И.В., Антонова О.С. Высокотемпературные электропроводящие свойства твердых растворов GdxTiyZrzCe1−x−y−zO2 // Перспективные материалы. 2016. № 2. С. 30–35.
  14. 14. Takeda T., Kanno R., Kawamoto Y., Takeda Y., Yamamoto O. New cathode materials for solid oxide fuel cells ruthenium pyrochlores and perovskites // J. Electrochem. Soc. 2000. V. 147. № 5. P. 1730–1733. https://doi.org/10.1149/1.1393425
  15. 15. Řehák B., Horčic K., Frumar M., Koudelka L. Preparation and electrical conductivity of Bi2Ru2O7 single crystals // J. Cryst. Growth. 1984. V. 68. № 2. P. 647–649. https://doi.org/10.1016/0022-0248 (84)90472-X
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека