RAS Chemistry & Material ScienceНеорганические материалы Inorganic Materials

  • ISSN (Print) 0002-337X
  • ISSN (Online) 3034-5588

Синтез и исследование влияния соотношения сферических композитов TiO2–SiO2–P2O5/ZnO и TiO2–SiO2–P2O5/CaO на биосвойства

PII
S30345588S0002337X25030138-1
DOI
10.7868/S3034558825030138
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 61 / Issue number 3
Pages
240-249
Abstract
Неорганические материалы, Синтез и исследование влияния соотношения сферических композитов TiO2–SiO2–P2O5/ZnO и TiO2–SiO2–P2O5/CaO на биосвойства
Keywords
Date of publication
17.02.2025
Year of publication
2025
Number of purchasers
0
Views
23

References

  1. 1. Kim T., See C.W., Li X., Zhu D. Orthopedic implants and devices for bone fractures and dеfects: past, present and perspective // Eng. Regener. 2020. V. 1. Р. 6–18. https://doi.org/10.1016/j.engreg.2020.05.003
  2. 2. Wajda A., Goldmann W.H., Detsch R., Boccaccini A.R., Sitarz M. Influence of zinc ions on structure, bioactivity, biocompatibility and antibacterial potential of melt-derived and gel-derived glasses from CaO–SiO2 system // J. Non.-Cryst. Solids. 2019. V. 511. № 1. Р. 86–99. https://doi.org/ 10.1016/j.jnoncrysol.2018.12.040
  3. 3. Correlo V.M., Oliveira J.M., Mano J.F., Neves N.M., Reis R.L. Natural origin materials for bone tissue engineering — properties, processing, and performance // Princ. Regener. Med. 2011. V. 3. Р. 557–586. https://doi.org/10.1016/B978-0-12-381422-7.10032-X
  4. 4. Xue N., Ding X., Huang R., Jiang R., Huang H., Pan X., Min W., Chen J., Duan J.A., Liu P., Wang Y. Bone tissue engineering in the treatment of bone defects // Pharmaceuticals. 2022. V. 15. Р. 879–889. https://doi.org/10.3390/ph15070879
  5. 5. Hou X., Zhang L., Zhou Z., Luo X., Wang T., Zhao X., Lu B., Chen F., Zheng L. Calcium phosphate-based biomaterials for bone repair // J. Funct. Biomater. 2022. V. 13. P. 187. https://doi.org/10.3390/jfb13040187
  6. 6. Popa A.C., Stan G.E., Husanu M.A., Mercioniu I., Santos L.F., Fernandes H.R. Bioglass implant-coating interactions in synthetic physiological fluids with varying degrees of biomimicry // Int. J. Nanomed. 2017. V. 12. Р. 683–707. https://doi.org/10.2147/IJN.S123236
  7. 7. Denry I., Kuhn L.T. Design and characterization of calcium phosphate ceramic scaffolds for bone tissue engineering // Dent. Mater. V. 32. № 1. 2016. P. 43–53. https://doi.org/10.1016/j.dental.2015.09.008
  8. 8. Ткачук В.А., Лютова Е.С., Борило Л.П., Бузаев А.А. Получение композитов TiO2–SiO2–P2O5/ZnO, исследование их свойств и возможностей применения в качестве биоматериала // Изв. вузов. Химия и хим. технология. 2024. Т. 67. № 5. С. 70‒76. https://doi.org/10.6060/ivkkt.20246705.6953
  9. 9. Tang Z., Niu J., Huang H., Pei J., Ou J., Yuan G. Potential biodegradable Zn–Cu binary alloys developed for cardiovascular implant applications // J. Mech. Behav. Biomed. Mater. 2017. V. 72. Р. 182–191. https://doi.org/10.1016/j.jmbbm.2017.05.013
  10. 10. Brady J., Dürig T., Lee P.I., Li J.-X. Polymer properties and characterization // Dev. Solid Oral Dosage Forms. 2017. V. 7. P. 181–223. https://doi.org/10.1016/B978-0-12-802447-8.00007-8
  11. 11. Wiesmann N., Tremel W., Brieger J. Zinc oxide nanoparticles for therapeutic purposes in cancer medicine // J. Mater. Chem. B. 2020. V. 8. P. 4973‒4989. https://doi.org/10.1039/D0TB00739K
  12. 12. Yin Z.F., Wu L., Yang H.G., Su Y.H. Recent progress in biomedical applications of titanium dioxide // Phys. Chem. Chem. Phys. 2013. V. 15 (14). P. 4844–4858. https://doi.org/10.1039/C3CP43938K
  13. 13. Kozik V.V., Borilo L.P., Lyutova E.S., Brichkov A.S., Chen Y.-W., Izosimova E.A. Preparation of CaO@TiO2–SiO2 biomaterial with a sol–gel method for bone implantation // ACS Omega. 2020. V. 5. P. 27221–27226. https://doi.org/10.1021/acsomega.0c03335
  14. 14. Shamsutdinova A.N., Kozik V.V. Obtaining and properties of thin films based on titanium, silicon and nickel oxides // Chem. Sustainable Dev. 2016. V. 24 (5). P. 699–704.
  15. 15. Lyutova E.S., Tkachuk V.A., Selyunina L.A., Fedorishin D.A., Chen Y.-W. Facile synthesis of TiO2– SiO2–P2O5/ CaO/ZnO with a core-shell structure for bone implantation // ACS Omega. 2022. 7(50). P. 46564–46572. https://doi.org/ 10.1021/acsomega.2c05398
  16. 16. Kokubo T. Bioactive glass ceramics: properties and applications // Biomaterials. 1991. V. 12. P. 155–163. https://doi.org/10.1016/0142-9612 (91)90194-F
  17. 17. Miyazaki T., Imanaka S., Akaike J. Relationship between valence of titania and apatite mineralization behavior in simulated body environment // J. Am. Ceram. Soc. 2021. V. 104. № 7. Р. 3545–3553. https://doi.org/ 10.1111/jace.17725
  18. 18. Li X., Wang M., Deng Y., Xiao Y., Zhang X. Fabrication and properties of Ca–P bioceramic spherical granules with interconnected porous structure // ACS Biomater. Sci. Eng. 2017. V. 3(8). P. 1557–1566. https://doi.org/10.1021/acsbiomaterials.7b00232
  19. 19. Mamaev N.N., Ryabov S.I. Hematology: a guide for physicians. St. Petersburg: SpetsLit, 2008. P. 560.
  20. 20. Hench L. Bioceramics: from concept to clinic // J. Am. Ceram. Soc. 1991. V. 74. P. 1487–1510. https://doi.org/10.1111/j.1151-2916.1991.tb07132.x
  21. 21. Ekimova I., Minakova T., Ogneva T. Phisicochemistry of alkaline-earth metals oxides surface // AIP Conf. Proc. 2016. V. 1698. P. 060014. https://doi.org/10.1063/1.4937869
  22. 22. Cazenave J.-P., Davies J.A., Kazatchkine M.D., Aken W.G. Blood–surface interactions. Biological principles underlying haemocompatibility with artificial materials. Amsterdam: Elsevier, 1986. P. 282.
  23. 23. Brady J., Dürig T., Lee P. I., Li J.-X. Polymer properties and characterization // Dev. Solid Oral Dosage Forms. 2017. V. 7. P. 181–223. https://doi.org/10.1016/B978-0-12-802447-8.00007-8
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library