- PII
- S30345588S0002337X25030119-1
- DOI
- 10.7868/S3034558825030119
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 61 / Issue number 3
- Pages
- 219-227
- Abstract
- Неорганические материалы, Керамика на основе гадолиний-стронций-замещенного гидроксиапатита
- Keywords
- Date of publication
- 17.02.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 37
References
- 1. Sundarabharathi L., Chinnaswamy M., Ponnamma D., Parangusan H., Al-Maadeed M.A.A. La3+/Sr2+ dual-substituted hydroxyapatite nanoparticles as bone substitutes: synthesis, characterization, in vitro bioactivity and cytocompatibility // J. Nanosci. Nanotechnol. 2020. V. 20. № 10. P. 6344–6353. https://doi.org/10.1166/jnn.2020.18577
- 2. Ressler A., Ivanković T., Polak B., Ivanišević I., Kovačić M., Urlić I., Hussainova I., Ivanković H. A multifunctional strontium/silver-co-substituted hydroxyapatite derived from biogenic source as antibacterial biomaterial // Ceram. Int. 2022. V. 48. № 13. P. 18361–18373. https://doi.org/10.1016/j.ceramint.2022.03.095
- 3. Hidouri M., Kthiri K., Mehnaoui M., Boughzala K. Characterization, sintering and ionic conductivity strontium fluorbritholites co-doped with gadolinium and neodymium // Available at SSRN 4002175. https://doi.org/10.2139/ssrn.4002175
- 4. Arreguin C.V., Maldonado L.F.S., Padron N.M., Ortiz R., Fernando Rosas F.H., Gómez J.R.A., Castillo R.V. Characterization and antimicrobial evaluation of gadolinium-doped hydroxyapatite for potential use as drug carrier system // Congr. Nac. Ing. Bioméd.. 2023. P. 139–147. https://doi.org/10.1007/978-3-031-46936-7_15
- 5. Qi C., Lin J., Fu L.-H., Huang P. Calcium-based biomaterials for diagnosis, treatment, and theranostics // Chem. Soc. Rev. 2018. V. 47. № 2. P. 357–403. https://doi.org/10.1039/C6CS00746E
- 6. Ressler A. Ivanković T., Polak B., Ivanišević I., Kovačić M., Urlić I., Hussainova I., Ivanković H. A multifunctional strontium/silver-co-substituted hydroxyapatite derived from biogenic source as antibacterial biomaterial // Ceram. Int. 2022. V. 48. № 13. P. 18361–18373. https://doi.org/10.1016/j.ceramint.2022.03.095
- 7. Naruphontjirakul P., Tsigkou O., Li S., Porter A.E., Jones J.R. Human mesenchymal stem cells differentiate into an osteogenic lineage in presence of strontium containing bioactive glass nanoparticles // Acta Biomater. 2019. V. 90. P. 373–392. https://doi.org/10.1016/j.actbio.2019.03.038
- 8. Peng S., Liu X.S., Wang T., Li Z., Zhou G., Luk K.D., Guo X.E., Lu W.W. In vivo anabolic effect of strontium on trabecular bone was associated with increased osteoblastogenesis of bone marrow stromal cells // J. Orthop. Res. 2010. V. 28. № 9. P. 1208–1214. https://doi.org/10.1002/jor.21127
- 9. Mariappan A., Pandi P., Rani K.B., Neyvasagam K. Study of the photocatalytic and antibacterial effect of Zn- and Cu-doped hydroxyapatite // Inorg. Chem. Commun. 2022. V. 136. № 4. P. 109128. https://doi.org/10.1016/j.inoche.2021.109128
- 10. Фадеева И.В., Шворнева Л.И., Баринов С.М., Орловский В.П. Синтез и структура магнийсодержащих гидроксиапатитов // Неорган. материалы. 2003. Т. 39. № 9. С. 1102–1105.
- 11. Fadeeva I.V., Lazoryak B.I., Davidova G.A., Murzakhanov F.F., Gabbasov B.F., Petrakova N.V., Fosca M., Barinov S.M., Vadalà G., Uskoković V., Zheng Y., Rau J.V. Antibacterial and cell-friendly copper-substituted tricalcium phosphate ceramics for biomedical implant applications // Mater. Sci. Eng., C. 2021. V. 129. P. 112410. https://doi.org/10.1016/j.msec.2021.112410
- 12. Petricek V., Dusek M., Palatinus L., Petrícek V., Dušek M., Palatinus L. Crystallographic computing system JANA2006: General features // Z. Kristallogr. — Cryst. Mater. 2014. V. 229. P. 345–352. https://doi.org/10.1515/zkri-2014-1737
- 13. Фадеева И.В., Фомин А.С., Баринов С.М., Давыдова Г.А., Селезнева И.И., Преображенский И.И., Русаков М.К., Фомина А.А., Волченкова В.А. Синтез и свойства марганецсодержащих кальцийфосфатных материалов // Неорган. материалы. 2020. Т. 56. № 7. С. 738–745. https://doi.org/10.31857/S0002337X20070052
- 14. Duta L., Oktar F.N., Stan G.E., Popescu-Pelin G., Serban N., Luculescu C., Mihailescu I.N. Novel doped hydroxyapatite thin films obtained by pulsed laser deposition // Appl. Surf. Sci. 2013. V. 265. P. 41–49. https://doi.org/10.1016/j.apsusc.2012.10.077
- 15. Kuriakose T.A., Kalkura S.N., Palanichamy M., Arivuoli D., Dierks K., Bocelli G., Betzel C. Synthesis of stoichiometric nano crystalline hydroxyapatite by ethanol-based sol–gel technique at low temperature // J. Cryst. Growth. 2004. V. 263. № 1–4. P. 517–523. https://doi.org/10.1016/j.jcrysgro.2003.11.057
- 16. Berzina-Cimdina L., Borodajenko N. Research of calcium phosphates using Fourier transform infrared spectroscopy // Infrared Spectrosc.: Mater. Sci., Eng. Technol. 2012. V. 12. № 7. P. 251–263. https://doi.org/10.5772/36942
- 17. Cheng Z.H., Yasukawa A., Kandori K., Ishikawa T. FTIR study of adsorption of CO2 on nonstoichiometric calcium hydroxyapatite // Langmuir. 1998. V. 14. № 23. P. 6681–6686. https://doi.org/10.1021/la980339n
- 18. Раджабова Г.Т., Русаков М.К. Керамические порошки из барий- и стронций-замещенных трикальцийфосфатов для медицины // Молодые ученые России. 2020. № 3. С. 21–26.
- 19. Fadeeva I.V., Deyneko D.V., Forysenkova A.A., Morozov V.A., Akhmedova S.A., Kirsanova V.A., Sviridova I.K., Sergeeva N.S., Rodionov S.A., Udyanskaya I.I., Antoniac I.V., Rau J.V. Strontium substituted β-tricalcium phosphate ceramics: physiochemical properties and cytocompatibility // Molecules. 2022. V. 27. № 18. P. 6085. https://doi.org/10.3390/molecules27186085
- 20. Оксидная керамика и огнеупоры. Спекание и ползучесть / Бакунов В.С., Беляков А.В., Лукин Е.С., Шаяхметов У.Ш. М.: Российский химико-технологический университет им. Д.И. Менделеева, 2007. 583 с.
- 21. Баринов С.М., Гурин А.Н., Петракова Н.В., Фадеева И.В., Фомин А.С. Керамика из цинкзамещенных гидроксиапатитов для остеопластики // Материаловедение. 2015. № 9. С. 54–56.