RAS Chemistry & Material ScienceНеорганические материалы Inorganic Materials

  • ISSN (Print) 0002-337X
  • ISSN (Online) 3034-5588

[]

PII
S30345588S0002337X25030067-1
DOI
10.7868/S3034558825030067
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 61 / Issue number 5
Pages
312-316
Abstract
In this work, a new approach to the synthesis of iron pentacarbonyl Fe(CO)₅ is studied, offering a more stable and less energy-intensive alternative to traditional methods for obtaining metal carbonyls—the inductive flow levitation (IFL). The IFL technology allows the process to be conducted at relatively low pressure (~5 bar). To optimize the synthesis of metal carbonyls, the reaction setup was modernized using a cryotrapping system, which consists of a quartz ampoule immersed in a Dewar vessel, maintained at a temperature of -40°C using a thermostat. During experiments, the composition of the resulting gas mixture was analyzed using gas chromatography and mass spectrometry methods, enabling high-precision identification and monitoring of the synthesized product directly during the reaction process.
Keywords
Date of publication
17.03.2025
Year of publication
2025
Number of purchasers
0
Views
42

References

  1. 1. Dewar J. The Physical and Chemical Properties of Iron Carbonyl // Proс. R. Soc. L. 1905. V. 76. № 513. P.558–577. https://doi.org/10.1098/rspa.1905.0063
  2. 2. Gorodkin S.R., James R.O., Kordonski W.I. Magnetic Properties of Carbonyl Iron Particles in Magnetorheological Fluids // J. Phys. Conf. Ser. 2009. V. 149. 012051. https://doi.org/10.1088/1742-6596/149/1/012051
  3. 3. Milecki A., Hauke M. Application of Magnetorheological Fluid in Industrial Shock Absorbers // Mech. Syst. Signal Process. 2012. V. 28. P.528–541. https://doi.org/10.1016/j.ymssp.2011.11.008
  4. 4. Wei D., Darcel C. Iron Catalysis in Reduction and Hydrometalation Reactions // Chem. Rev. 2019. V. 119. № 4. P.2550–2610. https://doi.org/10.1021/acs.chemrev.8b00372
  5. 5. Gao S., Liu Y., Shao Y., Jiang D., Duan Q. Iron Carbonyl Compounds with Aromatic Dithiolate Bridges as Organometallic Mimics of [FeFe] Hydrogenases // Coord. Chem. Rev. 2020. V. 402. 213081. https://doi.org/10.1016/j.ccr.2019.213081
  6. 6. Watt J., Bleier G.C., Austin M.J., Ivanov S.A., Huber D.L. Non-volatile Iron Carbonyls as Versatile Precursors for the Synthesis of Iron-Containing Nanoparticles // Nanoscale. 2017. V. 9. № 20. P.6632–6637. https://doi.org/10.1039/c7nr01028a
  7. 7. Yan H., Song X., Wang Y. Study on Wave Absorption Properties of Carbonyl Iron and SiO2 Coated Carbonyl Iron Particles // AIP Adv. 2018. V. 8. № 6. 065322. https://doi.org/10.1063/1.5034496
  8. 8. Chen D., Zhuang D., Zhao Y., Xie Q., Zhu J. Reaction Mechanisms of Iron(III) Catalyzed Carbonyl-Olefin Metatheses in 2,5- and 3,5-Hexadienals: Significant Substituent and Aromaticity Effects // Org. Chem. Front. 2019. V. 6. № 24. P.3917–3924. https://doi.org/10.1039/c9qo01008d
  9. 9. Mohamad N., Mazlan S.A., Choi S.B., Imaduddin F., Abdul Aziz S.A. The Field-Dependent Viscoelastic and Transient Responses of Plate-Like Carbonyl Iron Particle Based Magnetorheological Greases // J. Intell. Mater. Syst. Struct. 2019. V. 30. № 5. P.788–797. https://doi.org/10.1177/1045389X19828504
  10. 10. Mond L., Langer C. XCIII. — On Iron Carbonyls // J. Chem. Soc. 1891. V. 59. P.1090–1093. https://doi.org/10.1039/CT8915901090
  11. 11. Wildermuth E., Stark H., Friendrich G., Ebenhoch F.L., Kuhborth B., Silver J., Rituper R. Iron Compounds // UEIC. 2000. V. 20. P.41–59. https://doi.org/10.1002/14356007.a14_591
  12. 12. Hieber W., Geisenberger O. Über Metallcarbonyle. XLVII. Über den Einfluß von Chalkogenen auf die Entstehung von Eisenpentacarbonyl aus den Komponenten // Z. Anorg. Chem. 1950. V. 262. № 1–5. P.332–336. https://doi.org/10.1002/zaac.19502620104
  13. 13. Banks R.L., Bailey G.C. Olefin Disproportionation. A New Catalytic Process // I&EC Prod. Res. Dev. 1964. V. 3. № 3. P.170–173. https://doi.org/10.1021/i360011a002
  14. 14. Tang M., Zhang H., Her T.H. Self-Assembly of Tunable and Highly Uniform Tungsten Nanogratings Induced by a Femtosecond Laser with Nanojoule Energy // Nanotechnology. 2007. V. 18. № 48. 485304. https://doi.org/10.1088/0957-4484/18/48/485304
  15. 15. Xiao C., Liu B., He X. Photolytic Deposition of Tungsten Hexacarbonyl: CVD of W-based Films with the Assistant of UV Beam in Ultra-High Vacuum Condition // Mater. Res. Express. 2019. V. 6. № 8. 086453. https://doi.org/ 10.1088/2053-1591/ab24fc
  16. 16. Bruno S.M., Valente A.A., Gonçalves I.S., Pillinger M. Group 6 Carbonyl Complexes of N, O, P-ligands as Precursors of High-Valent Metal-Oxo Catalysts for Olefin Epoxidation // Coord. Chem. Rev. 2023. V. 478. 214983. https://doi.org/10.1016/j.ccr.2022.214983
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library