- Код статьи
- S30345588S0002337X25010049-1
- DOI
- 10.7868/S3034558825010049
- Тип публикации
- Статья
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том 61 / Номер выпуска 1-2
- Страницы
- 33-45
- Аннотация
- В работе сделан анализ основных математических моделей расчета теплоемкости и энтальпии кристаллизации по результатам измерений методом температурной истории. На примере кристаллогидратов Zn(NO)·6HO и Co(NO)·6HO показано, что метод температурной истории может быть применен как дополнение к методу дифференциальной сканирующей калориметрии при измерении навески вещества массой от 5 до 30 г в условиях естественного охлаждения. Определено, что наилучшим методом расчета энтальпии кристаллизации является метод термической задержки. По результатам измерений определено, что энтальпия кристаллизации Co(NO)·6HO составила 131.8 Дж/г, энтальпия плавления - 131.4 Дж/г. Энтальпия кристаллизации Zn(NO)·6HO составила 128.9 Дж/г, энтальпия плавления - 157.4 Дж/г. Учет вклада теплоемкости в переохлажденной области, равного 16.9 Дж/(г °C), позволяет сделать вывод о корреляции этих двух величин.
- Ключевые слова
- гексагидрат нитрата цинка гексагидрат нитрата кобальта теплоаккумулирующие материалы метод температурной истории метод термической задержки метод временной задержки
- Дата публикации
- 01.01.2025
- Год выхода
- 2025
- Всего подписок
- 0
- Всего просмотров
- 6
Библиография
- 1. Тестов Д.С., Моржухина С.В., Гашимова В.Р., Моржухин А.М., Кирюхина Г.В., Попова Е.С., Гасиев А.Л., Крюкова-Селиверстова А.В. Получение и исследование физико-химических свойств фазопереходных теплоаккумулирующих материалов на основе гексагидрата нитрата цинка // Журн. физ. химии. 2024. Т. 98. № 2. С. 11-27. https://doi.org/10.31857/S0044453724020027
- 2. Testov D.S., Morzhukhina S.V., Gashimova V.R., Morzhukhin A.M., Kryukova-Seliverstova A.V., Denisova E.A., Sobol O.V. The informational reliability evaluation of zinc nitrate hexahydrate physicochemical properties for applied research // Russ. J. Phys. Chem. A. 2024. V. 98. № 11. P. 2415-2424. https://doi.org/10.1134/S0036024424701589
- 3. Kenisarin M., Mahkamov K. Salt hydrates as latent heat storage materials: thermophysical properties and costs // Sol. Energy Mater. Sol. Cells. 2016. V. 145. P. 255-286. https://doi.org/10.1016/j.solmat.2015.10.029
- 4. Chakraborty A., Noh J., Shamberger P., Yu Ch. Unveiling real-time crystallization with nucleators and thickeners for zinc nitrate hexahydrate as a phase change material // J. Energy Storage. 2023. V. 5. № 4. P. e417. https://doi.org/10.1002/est2.417
- 5. Kumar N., Banerjee D., Chavez Jr. R. Exploring additives for improving the reliability of zinc nitrate hexahydrate as a phase change material (PCM) // J. Energy Storage. 2018. V. 20. P. 153-162. https://doi.org/10.1016/j.est.2018.09.005
- 6. Dixit P., Reddy V.J., Dasari A., Chattopadhyay S. Preparation of perlite based zinc nitrate hexahydrate composite for electric radiant floor heating in model building and numerical analysis // J. Energy Storage. 2022. V. 52. P. 104804. https://doi.org/10.1016/j.est.2022.104804
- 7. Małecka B., Łącz A., Drożdż E., Małecki A. Thermal decomposition of D-metal nitrates supported on alumina // J. Therm. Anal. Calorim. 2015. V. 119. P. 1053-1061. https://doi.org/10.1007/s10973-014-4262-9
- 8. Mehling H., Ebert H.P., Schossig P. Development of standards for materials testing and quality control of PCM // 7th IIR Conf. on phase change materials and slurries for refrigeration and air conditioning. Dinan. 2006. P. 8.
- 9. Yinping Z., Yi J. A simple method, the-history method, of determining the heat of fusion, specific heat and thermal conductivity of phase-change materials // Meas. Sci. Technol. 1999. V. 10. №. 3. P. 201-205. https://doi.org/10.1088/0957-0233/10/3/015
- 10. Hong H., Kim S.K., Kim Y.S. Accuracy improvement of T-history method for measuring heat of fusion of various materials // Int. J. Refrig. 2004. V. 27. № 4. P. 360-366. https://doi.org/10.1016/j.ijrefrig.2003.12.006
- 11. Sandnes B., Rekstad J. Supercooling salt hydrates: stored enthalpy as a function of temperature // Sol. Energy. 2006. V. 80. №. 5. P. 616-625. https://doi.org/10.1016/j.solener.2004.11.014
- 12. Marín J.M., Zalba B., Cabeza L.F., Mehling H. Determination of enthalpy-temperature curves of phase change materials with the temperature-history method: improvement to temperature dependent properties // Meas. Sci. Technol. 2003. V. 14. № 2. P. 184. https://doi.org/10.1088/0957-0233/14/2/305
- 13. Kravvaritis E.D., Antonopoulos K.A., Tzivanidis C. Improvements to the measurement of the thermal properties of phase change materials // Meas. Sci. Technol. 2010. V. 21. № 4. P. 045103. https://doi.org/10.1088/0957-0233/21/4/045103
- 14. Kravvaritis E.D., Antonopoulos K.A., Tzivanidis C. Experimental determination of the effective thermal capacity function and other thermal properties for various phase change materials using the thermal delay method // Appl. Energy. 2011. V. 88. № 12. P. 4459-4469. https://doi.org/10.1016/j.apenergy.2011.05.032
- 15. Solé A., Miró L., Barreneche C., Martorell I., Cabeza L.F. Review of the T-history method to determine thermophysical properties of phase change materials (PCM) // Renewable Sustainable Energy Rev. 2013. V. 26. P. 425-436. https://doi.org/10.1016/j.rser.2013.05.066
- 16. Huang Z., Xie N., Luo Z., Gao X., Fang X., Fang Y., Zhang Zh. Characterization of medium-temperature phase change materials for solar thermal energy storage using temperature history method // Sol. Energy Mater. Sol. Cells. 2018. V. 179. P. 152-160. https://doi.org/10.1016/j.solmat.2017.11.006
- 17. Thonon M., Gilles F., Zalewski L., Pailha M. Analytical modelling of PCM supercooling including recalescence for complete and partial heating/cooling cycles // Appl. Therm. Eng. 2021. V. 190. P. 116751. https://doi.org/10.1016/j.applthermaleng.2021.116751
- 18. D’Avignon K., Kummert M. Assessment of T-history method variants to obtain enthalpy-temperature curves for PCMs with significant subcooling // J. Therm. Sci. Eng. Appl. 2015. V. 7. № 4. P. 041015. https://doi.org/10.1115/1.4031220
- 19. Garg H.P., Mullick S.C., Bhargava V.K. Solar thermal energy storage. Dordrecht: Springer, 1985. 642 p. https://link.springer.com/book/10.1007/978-94-009-5301-7
- 20. Riesenfeld E H., Milchsack C. Versuch einer Bestimmung des Hydratationsgrades von Salzen in Konzentrierten Lösungen // Z. Anorg. Chem. 1914. V. 85. № 1. P. 401-429. https://doi.org/10.1002/zaac.19140850123
- 21. Guion J., Sauzade J.D., Laügt M. Critical examination and experimental determination of melting enthalpies and entropies of salt hydrates // Thermochim. Acta. 1983. V. 67. № 2. P. 167-179. https://doi.org/10.1016/0040-6031 (83)80096-3
- 22. Кипер Р.А. Свойства веществ: Справочник по химии. Хабаровск, 2013. 1016 с.
- 23. Aboul-Enein S., Ramadan M.R.I. Storage of low temperature heat in salt-hydrate melts for heating applications // Sol. Wind Technol. 1988. V. 5. P. 441-444. https://doi.org/10.1016/0741-983X (88)90011-2
- 24. Abhat A., Aboul-Enein S., Malatidis N.A. Latent heat thermal energy storage. Determination of properties of storage media and development of a new heat transfer system (in German) // Research report № 82-016, Stuttgart, 1982. P. 193.