RAS Chemistry & Material ScienceНеорганические материалы Inorganic Materials

  • ISSN (Print) 0002-337X
  • ISSN (Online) 3034-5588

Broadband near-IR photoluminescence of divalent copper impurity center in LaAlO3 perovskite

PII
S30345588S0002337X24090039-1
DOI
10.7868/S3034558824090039
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 61 / Issue number 3
Pages
141-148
Abstract
Неорганические материалы, Broadband near-IR photoluminescence of divalent copper impurity center in LaAlO3 perovskite
Keywords
фотолюминесценция перовскит двухвалентная медь примесный центр
Date of publication
17.02.2025
Year of publication
2025
Number of purchasers
0
Views
32

References

  1. 1. Moncorge R. Laser materials based on transition metal ions // Opt. Mater. 2017. V. 63. P. 105–117. https://doi.org/10.1016/j.optmat.2016.05.060
  2. 2. Meijer G. Infrared fluorescence of copper-activated zinc sulphide phosphors // J. Phys. Chem. Solids. 1958. V. 7. № 2–3. P. 153–158. https://doi.org/10.1016/0022-3697 (58)90256-7
  3. 3. Broser I., Maier H., Schulz H-J. Fine structure of the infrared absorption and emission spectra of Cu2+ in ZnS and CdS crystals // Phys. Rev. А. 1965. V. 140. № 6. P. A2135–A2138. https://doi.org/10.1103/PhysRev.140.A2135
  4. 4. Broser I., Hoffmann A., Heitz R., Thurian P. Zeeman and piezospectroscopy of the Cu2+ center in CdS // J. Lumin. 1991. V. 48–49. P. 693–697. https://doi.org/10.1016/0022-2313 (91)90221-G
  5. 5. Kimpel B.M., Schulz H.-J. Infrared luminescence of ZnO:Cu2+ (d9) // Phys. Rev. B. 1991. V. 43. № 12–15. P. 9938–9940. https://doi.org/10.1103/PhysRevB.43.9938
  6. 6. Pozza G., Ajo D., Chiari G. et al. Photoluminescence of the inorganic pigments Egyptian blue, Han blue and Han purple // J. Cult. Heritage. 2000. V. 1. № 4. P. 393–398. https://doi.org/10.1016/S1296-2074 (00)01095-5
  7. 7. Accorsi G., Verri G., Bolognesi M. et al. The exceptional near-infrared luminescence properties of cuprorivaite (Egyptian blue) // Chem. Commun. 2009. V. 23. P. 3392–3394. https://doi.org/10.1039/B902563D
  8. 8. Li Y.-J., Ye S., Wang C.-H. et al. Temperature-dependent near-infrared emission of highly concentrated Cu2+ in CaCuSi4O10 phosphor // J. Mater. Chem. C. 2014. V. 2. № 48. P. 10395–10402. https://doi.org/10.1039/C4TC01966K
  9. 9. Romanov A.N., Haula E.V., Shashkin D.P., Korchak V.N. Broadband near-IR photoluminescence of trigonal-bipyramidal coordinated Cu2+ impurity center in YGaO3, YInO3 and GdInO3 hexagonal phases // J. Lumin. 2020. V. 228(2A). Р. 117652. https://doi.org/10.1016/j.jlumin.2020.117652
  10. 10. Dubicki L., Krausz E., Riley M. The first d-d fluorescence of a six-coordinate copper(II) ion // J. Am. Chem. Soc. 1989. V. 111. № 9. P. 3452–3454. https://doi.org/10.1021/ja00191a065
  11. 11. Dubicki L., Krausz E., Riley M. Structured d-d fluorescence from CuF64− doped in cubic and tetragonal perovskites // Chem. Phys. Lett. 1989. V. 157. № 4. P. 315–320. https://doi.org/10.1016/0009-2614 (89)87254-9
  12. 12. Dubicki L., Riley M., Krausz E. Electronic structure of the copper(II) ion doped in cubic KZnF3 // J. Chem. Phys. 1994. V. 101. № 3. P. 1930–1938. https://doi.org/10.1063/1.467703
  13. 13. Romanov A.N., Haula E.V., Kapustin A.A., Kostyukov A.A., Egorov A.E., Kuzmin V.A., Korchak V.N. Broadband near infrared photoluminescence of Cu2+-doped corundum (α-Al2O3) // J. Am. Ceram. Soc. 2024. V. 107. № 2. P. 979–983. https://doi.org/10.1111/jace.19485
  14. 14. Романов А.Н., Хаула Е.В., Капустин А.А., Кули-заде А.М., Корчак В.Н. Влияние солегирующих ионов на ИК-фотолюминесценцию примесных центров Cu2+ в корунде (α-Al2O3) // Неорган. материалы. 2023. Т. 59. № 11. С. 1303–1308. https://doi.org/10.31857/S0002337X23110118
  15. 15. Adachi S. Review–photoluminescence properties of Cr3+-activated oxide phosphors // ECS J. Solid State Sci. Technol. 2021. V. 10. Р. 026001. https://doi.org/10.1149/2162-8777/abdc01
  16. 16. Ueda J., Minowa T., Xu J., Tanaka S., Nakanishi T., Takeda T., Tanabe S. Highly thermal stable broadband near-infrared luminescence in Ni2+-doped LaAlO3 with charge compensator // ACS Appl. Opt. Mater. 2023. V. 1. № 6. P. 1128–1137. https://doi.org/10.1021/acsaom.3c00041
  17. 17. Томашпольский Ю.Я., Садовская Н.В., Рыбакова Л.Ф., Холопова С.Ю., Борисов Ю.В. Наноструктурные особенности фазообразования CeO2/LaAlO3 и CeO2/(Ni-W), полученных осаждением из металлоорганических растворов // Неорган. материалы. 2011. Т. 47. № 12. С. 1497–1501.
  18. 18. Томашпольский Ю.Я., Рыбакова Л.Ф., Садовская Н.В., Холопова С.Ю., Борисов Ю.В. Наноструктурные особенности фазообразования в YBa2Cu3O7/LaAlO3 и YBa2Cu3O7/CeO2/(Ni–W), полученных осаждением из металлоорганических растворов // Неорган. материалы 2012. Т. 48. № 1. С. 51–56.
  19. 19. Howard C.J., Kennedy B.J., Chakoumakos B.C. Neutron powder diffraction study of rhombohedral rare-earth aluminates and the rhombohedral to cubic phase transition // J. Phys.: Condens. Matter. 2000. V. 12. P. 349–365. https://doi.org/10.1088/0953-8984/12/4/301
  20. 20. Huang С., Li S., Gong Q., Fang Q., Xu M., Tao S., Zhao C., Hang Y. Optical properties of Nd,Th:LaAlO3 demonstrates its potential in high-energy pulsed laser // Opt. Laser Technol. 2022. V. 156. Р. 108495. https://doi.org/10.1016/j.optlastec.2022.108495
  21. 21. Chang Y.-C., Hou D.-S., Yu Y.-D., Xie S.-S., Zhou T. Color center and domain structure in the single crystals of LaAlO3 // J. Cryst. Growth. 1993. V. 129. № 1–2. P. 362–364. https://doi.org/10.1016/0022-0248 (93)90466-A
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library