RAS Chemistry & Material ScienceНеорганические материалы Inorganic Materials

  • ISSN (Print) 0002-337X
  • ISSN (Online) 3034-5588

Примесное поглощение ионами меди(II) в вольфрамсодержащем теллуритно-цинкатном стекле

PII
S3034558825040126-1
DOI
10.7868/S3034558825040126
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 61 / Issue number 7
Pages
488-493
Abstract
Для стеклообразной матрицы состава (TeO2)0.72(ZnO)0.18(WO3)0.10, легированной ионами Cu2+ в диапазоне концентраций от 75 до 2400 ppm, исследовано оптическое пропускание в интервале длин волн 350–2400 нм. На спектрах присутствует интенсивная полоса поглощения с максимумом при ~ 810 нм. Для серии образцов стекол с добавление различной концентрации меди установлена спектральная зависимость ее удельного коэффициента поглощения во всей области прозрачности, в максимуме полосы рассчитанное значение составило 4910 ± 20 дБ/(км ppm).
Keywords
Date of publication
15.04.2025
Year of publication
2025
Number of purchasers
0
Views
36

References

  1. 1. Stanworth J.E. Tellurite Glasses // Nature. 1952. V. 169. № 4301. P. 581–582. https://doi.org/10.1038/169581b0
  2. 2. El-Mallawany R.A.H. Tellurite Glasses Handbook. CRC Press, 2016.
  3. 3. El-Mallawany R.A.H. Tellurite Glass Smart Materials. Cham: Springer, 2018.
  4. 4. Bürger H., Vogel W., Kozhukharov V. IR Transmission and Properties of Glasses in the TeO2–[RnOm, RnXm, Rn(SO4)m, Rn(PO3)m and B2O3] Systems // Infrared Phys. 1985. V. 25. № 1–2. P. 395–409. https://doi.org/10.1016/0020-0891 (85)90114-9
  5. 5. Hrabovsky J., Strizik L., Desevedavy F., Tazlaru S., Kucera M., Nowak L., Krystufek R., Mistrik J., Dedic V., Kopecky V., Gadret G., Wagner T., Smektala F., Veis M. Optical, Magneto-Optical Properties and Fiber-Drawing Ability of Tellurite Glasses in the TeO2–ZnO–BaO Ternary System // J. Non-Cryst. Solids. 2024. V. 624. P. 122712. https://doi.org/10.1016/j.jnoncrysol.2023.122712
  6. 6. Sekiya T., Mochida N., Ohtsuka A., Tonokawa M. Normal Vibrations of Two Polymorphic Forms of TeO2 Crystals and Assignments of Raman Peaks of Pure TeO2 Glass // J. Ceram. Assoc. Jpn. 1989. V. 97. № 1132. P. 1435–1440. https://doi.org/10.2109/jcersj.97.1435
  7. 7. Stegeman R., Jankovic L., Kim H., Rivero C., Stegeman G., Richardson K., Delfyett P., Guo Y., Schulte A., Cardinal T. Tellurite Glasses with Peak Absolute Raman Gain Coefficients up to 30 Times That of Fused Silica // Opt. Lett. 2003. V. 28. № 13. P. 1126–1128. https://doi.org/10.1364/OL.28.001126
  8. 8. Tagiara N.S., Palles D., Simandiras E.D., Psycharis V., Kyritsis A., Kamitsos E.I. Synthesis, Thermal and Structural Properties of Pure TeO2 Glass and Zinc-Tellurite Glasses // J. Non-Cryst. Solids. 2017. V. 457. P. 116–125. https://doi.org/10.1016/j.jnoncrysol.2016.11.033
  9. 9. Mori A., Ohishi Y., Sudo S. Erbium-Doped Tellurite Glass Fibre Laser and Amplifier // Electron. Lett. 1997. V. 33. № 10. P. 863–864. https://doi.org/10.1049/el:19970585
  10. 10. Richards B., Jha A., Tsang Y., Binks D., Lousteau J., Fusari F., Lagatsky A., Brown C., Sibbett W. Tellurite Glass Lasers Operating Close to 2 μm // Laser Phys. Lett. 2010. V. 7. № 3. P. 177–193. https://doi.org/10.1002/lapl.200910131
  11. 11. Wang J.S., Machewirth D.P., Wu F., Snitzer E., Vogel E.M. Neodymium-Doped Tellurite Single-Mode Fiber Laser // Opt. Lett. 1994. V. 19. № 18. P. 1448–1449. https://doi.org/10.1364/OL.19.001448
  12. 12. Manning S., Ebendorff-Heidepriem H., Monro T.M. Ternary Tellurite Glasses for the Fabrication of Nonlinear Optical Fibres // Opt. Mater. Express. 2012. V. 2. № 2. P. 140. https://doi.org/10.1364/OME.2.000140
  13. 13. O’Donnell M.D., Richardson K., Stolen R., Rivero C., Cardinal T., Couzi M., Furniss D., Seddon A.B. Raman Gain of Selected Tellurite Glasses for IR Fibre Lasers Calculated from Spontaneous Scattering Spectra // Opt. Mater. 2008. V. 30. № 6. P. 946–951. https://doi.org/10.1016/j.optmat.2007.05.010
  14. 14. Moiseev A.N., Dorofeev V.V., Chilyasov A.V., Kraev I.A., Churbanov M.F., Kotereva T.V., Pimenov V.G., Snopatin G.E., Pushkin A.A., Gerasimenko V.V., Kosolapov A.F., Plotnichenko V.G., Dianov E.M. Production and Properties of High Purity TeO2–ZnO–Na2O–Bi2O3 and TeO2–WO3–La2O3–MoO3 Glasses // Opt. Mater. 2011. V. 33. № 12. P. 1858–1861. https://doi.org/10.1016/j.optmat.2011.02.042
  15. 15. Dorofeev V.V., Moiseev A.N., Churbanov M.F., Snopatin G.E., Chilyasov A.V., Kraev I.A., Lobanov A.S., Kotereva T.V., Ketkova L.A., Pushkin A.A., Gerasimenko V.V., Plotnichenko V.G., Kosolapov A.F., Dianov E.M. High-Purity TeO2–WO3–(La2O3, Bi2O3) Glasses for Fiber-Optics // Opt. Mater. 2011. V. 33. № 12. P. 1911–1915. https://doi.org/10.1016/j.optmat.2011.03.032
  16. 16. Снопатин Г.Е., Плотниченко В.Г., Волков С.А., Дорофеев В.В., Дианов Е.М., Чурбанов М.Ф. Коэффициент экстинкции Ni2+ в стекле (TeO2)0.78(WO3)0.22 // Неорган. материалы. 2010. Т. 46. № 8. С. 1016–1019.
  17. 17. Thomas R.L., Hari M., Nampoori V.P.N., Radhakrishnan P., Thomas S. Two Photon Absorption in TeO2–ZnO Glass at Different Laser Irradiances // IOP Conf. Ser.: Mater. Sci. Eng. 2015. V. 73. P. 12090. https://doi.org/10.1088/1757-899X/73/1/012090
  18. 18. Замятин О.А., Чурбанов М.Ф., Плотниченко В.Г., Сибиркин А.А., Федотова И.Г., Гаврин С.А. Удельный коэффициент поглощения меди в стекле (TeO2)0.80(MoO3)0.20 // Неорган. материалы. 2015. Т. 51. № 12. С. 1380. https://doi.org/10.7868/S0002337X15110160
  19. 19. Zamyatin O.A., Plotnichenko V.G., Churbanov M.F., Zamyatina E.V., Karzanov V.V. Optical Properties of Zinc Tellurite Glasses Doped with Cu2+ Ions // J. Non-Cryst. Solids. 2018. V. 480. P. 81–89. https://doi.org/10.1016/j.jnoncrysol.2017.08.025
  20. 20. Замятин О.А., Лексаков Д.А., Носов З.К. Примесное поглощение ионами меди(II) в молибденсодержащем теллуритно-цинкатном стекле // Неорган. материалы. 2021. Т. 57. № 11. C. 1246–1252. https://doi.org/10.31857/S0002337X21110142
  21. 21. Краснов М.В., Замятин О.А. Примесное поглощение ионами меди(II) в висмутсодержащем теллуритно-цинкатном стекле // Неорган. материалы. 2023. Т. 59. № 5. C. 540–547. https://doi.org/10.31857/S0002337X23050093
  22. 22. Чукуров П.М. Меди оксиды // Химическая энциклопедия. В 5 т. 1990. C. 669–670.
  23. 23. Lupu A. Thermogravimetry of Copper and Copper Oxides (Cu2O–CuO) // J. Therm. Anal. 1970. Т. 2. № 4. C. 445–458. https://doi.org/10.1007/bf01911613
  24. 24. Zhu X., Wang Z., Su X., Vilarinho P.M. New Cu3TeO6 Ceramics: Phase Formation and Dielectric Properties // ACS Appl. Mater. Interfaces. 2014. V. 6. № 14. P. 11326–11332. https://doi.org/10.1021/am501742z
  25. 25. Gospodinov G.G. Phase States of Copper Orthotellurates in an Aqueous Medium and in Thermolysis // J. Mater. Sci. Lett. 1992. V. 11. № 21. P. 1460–1462. https://doi.org/10.1007/BF00729664
  26. 26. Kivelson D., Neiman R. ESR Studies on the Bonding in Copper Complexes // J. Chem. Phys. 1961. V. 35. № 1. P. 149–155. https://doi.org/10.1063/1.1731880
  27. 27. Siegel I., Lorenc J.A. Paramagnetic Resonance of Copper in Amorphous and Polycrystalline GeO2 // J. Chem. Phys. 1966. V. 45. № 6. P. 2315–2320. https://doi.org/10.1063/1.1727927
  28. 28. Klonkowski A. The Structure of Sodium Aluminosilicate Glass // Phys. Chem. Glasses. 1983. V. 24. № 6. P. 166–171.
  29. 29. Duran A., Fernandz Navarro J.M. The Colouring of Glass by Cu2+ Ions // Phys. Chem. Glasses. 1985. V. 26. № 4. С. 125–131.
  30. 30. Hu X.-F., Wu S.-Y., Li G.-L., Zhang Z.-H. Theoretical Investigations of the Spin Hamiltonian Parameters and Local Tetragonal Distortions for Cu2+ in Crystalline and Amorphous TeO2 and GeO2 // Mol. Phys. 2014. V. 112. № 19. P. 2627–2632. https://doi.org/10.1080/00268976.2014.901566
  31. 31. Dong H.-N., Zhang R. Theoretical Studies of the Electron Paramagnetic Resonance Parameters and Local Structures for Cu2+ in (100–2x)TeO2–xAg2O–xWO3 Glasses // Rev. Mex. Fís. 2021. V. 67. № 1. P. 1–6. https://doi.org/10.31349/RevMexFis.67.1
  32. 32. Ramadevudu G., Shareefuddin M., Sunitha Bai N., Lakshmipathi Rao M., Narasimha Chary M. Electron Paramagnetic Resonance and Optical Absorption Studies of Cu2+ Spin Probe in MgO–Na2O–B2O3 Ternary Glasses // J. Non-Cryst. Solids. 2000. V. 278. № 1–3. P. 205–212. https://doi.org/10.1016/S0022-3093 (00)00255-6
  33. 33. Gayathri P.P., Vijaya K.R., Chandra M.V. Characterization of ZnO Based Boro Tellurite Glass System // Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B. 2016. V. 57. № 2. P. 104–110. https://doi.org/10.13036/17533562.57.2.013
  34. 34. Okasha A., Marzouk S.Y., Abdelghany A.M. Design a Tunable Glasses Optical Filters Using CuO Doped Fluoroborate Glasses // Opt. Laser Technol. 2021. V. 137. P. 106829. https://doi.org/10.1016/j.optlastec.2020.106829
  35. 35. Sreedhar B., Rao J.L., Lakshman S.V.J. Electron Spin Resonance and Optical Absorption Spectra of Cu2+ Ions in Alkali Zinc Borosulphate Glasses // J. Non-Cryst. Solids. 1990. V. 124. № 2–3. P. 216–220. https://doi.org/10.1016/0022-3093 (90)90265-N
  36. 36. Narendra G.L., Sreedhar B., Rao J.L., Lakshman S.V.J. Electron Spin Resonance and Optical Absorption Spectra of Cu2+ Ions in Na2SO4–ZnSO4 Glasses // J. Mater. Sci. 1991. V. 26. № 19. P. 5342–5346. https://doi.org/10.1007/BF01143231
  37. 37. Upender G., Devi C.S., Kamalaker V., Mouli V.C. The Structural and Spectroscopic Investigations of Ternary Tellurite Glasses, Doped with Copper // J. Alloys Compd. 2011. V. 509. № 19. P. 5887–5892. https://doi.org/10.1016/j.jallcom.2011.03.001
  38. 38. Upender G., Prasad M., Mouli V.C. Vibrational, EPR and Optical Spectroscopy of the Cu2+ Doped Glasses with (90-x)TeO2–10GeO2–xWO3 (7.5 ≤ x ≤ 30) Composition // J. Non-Cryst. Solids. 2011. V. 357. № 3. P. 903–909. https://doi.org/10.1016/j.jnoncrysol.2010.12.001
  39. 39. Kamalaker V., Upender G., Prasad M., Chandra Mouli V. Infrared, ESR and Optical Absorption Studies of Cu2+ Ions Doped in TeO2–ZnO–NaF Glass System // Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B. 2010. V. 48. № 10. С. 709–715.
  40. 40. Newns G.R., Pantelis P., Wilson J.L., Uffen R.W.J., Worthington R. Absorption Losses in Glasses and Glass Fibre Waveguides // Opt. Electron. 1973. V. 5. № 4. P. 289–296. https://doi.org/10.1007/BF02057128
  41. 41. Spierings G.A.C.M. Optical Absorption of Transition Metals in Alkali Lime Germanosilicate Glasses // J. Mater. Sci. 1979. V. 14. № 10. P. 2519–2521. https://doi.org/10.1007/BF00737045
  42. 42. Keppler H. Crystal Field Spectra and Geochemistry of Transition Metal Ions in Silicate Melts and Glasses // Am. Mineral. 1992. V. 77. № 1–2. P. 62–75.
  43. 43. France P.W., Carter S.W., Williams J.R. Effects of Atmosphere Control on the Oxidation States of 3d Transition Metals in ZrF4 Based Glasses // MSF. 1985. V. 5–6. P. 353–359. https://doi.org/10.4028/www.scientific.net/MSF.5-6.353
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library