Продолжены исследования по разработке технологии синтеза нанокерамических электролитов на основе высокопроводящих нестехиометрических тисонитовых (пр. гр. 31) твердых растворов. Получены нано- и микроразмерные образцы керамики состава (CePr)SrF, исследованы их рентгенографические, структурно-морфологические и кондуктометрические характеристики. Исходный твердый электролит синтезировали методом спонтанной кристаллизации расплава во фторирующей атмосфере, затем измельчали в ступке и в шаровой мельнице для получения порошка разных фракций и прессовали холодным способом. Обнаружено, что наноразмерная керамика обладает более высокими электролитическими характеристиками в сравнении с микрокерамикой. Ионная проводимость нанокерамики (CePr)SrF составляет σ = 4.7 × 10 См/см при 500 K, энтальпия активации ионного переноса обусловлена миграцией вакансий фтора на межзеренных границах и составляет Δ = 0.43 эВ ( < 560 K) и 0.27 эВ ( > 560 K). Катионный состав изученного многокомпонентного твердого электролита является перспективным для дальнейшей оптимизации синтеза фторидной нанокерамики и ее практического применения в твердотельных электрохимических устройствах.
Исследованы рентгенографические и ионопроводящие свойства нанокерамического твердого раствора (Pb0.67Cd0.33)0.825Sr0.175F2 (структурный тип CaF2, пр. гр. Fmm). Нанокристаллические порошки получены методом механохимического синтеза с использованием двух видов шихты. В первом способе в качестве реагентов взяты индивидуальные плавы PbF2, CdF2 и SrF2, во втором – предварительно сплавленный твердый раствор Pb0.67Cd0.33F2 и SrF2. Обнаружено, что способ приготовления шихты не влияет на формирование и свойства тройного твердого раствора. Параметры решетки твердого раствора (Pb0.67Cd0.33)0.825Sr0.175F2 равны a = 5.778 и 5.772 Å для первого и второго способов соответственно. Оценка среднего размера областей когерентного рассеяния в нанопорошках по рентгеновским данным дает величину в несколько десятков нм. Нанокерамику готовили холодным прессованием порошков, ее плотность составляла 80% от рентгенографической плотности твердого раствора (6.89 г/см3). После отжига при 500 °С в течение 2 ч плотность керамики увеличилась до 90%. Ионная проводимость σdc исходной и отожженной нанокерамики равна 2.5×10–6 и 1.2×10–5 См/см соответственно. Значение σdc для отожженной нанокерамики по сравнению с монокристаллом такого же состава меньше на 20%.
Методом вертикальной направленной кристаллизации (Бриджмена) выращен монокристалл гетеровалентного твердого раствора Pb1−xScxF2+x (х = 0.1 по шихте) со структурой флюорита, проведены исследования его фазового и элементного состава, определены кристаллографические параметры и изучена взаимосвязь тепло- и электропроводности. Состав твердого раствора изменяется от x = 0.08 в нижней части (в конусе) до 0.095 в верхней части кристалла. Обнаружено, что выращенный кристалл Pb1−xScxF2+x обладает низкой теплопроводностью (k = 0.7 Вт/(мK) при 300 K), нетипичным для кристаллического состояния “стеклообразным” поведением теплопереноса, высокой фторионной электропроводностью (σdc = 0.012 См/м при 293 K) и невысокой энтальпией активации ионного переноса (ΔHs = 0.378 ± 0.005 эВ).Такое поведение тепло- и электропроводности твердого раствора Pb1−xScxF2+x обусловлено структурным разупорядочением фторной подрешетки, сохраняющимся при комнатной температуре, в результате гетеровалентных замещений катионов Pb2+ на Sc3+. Проведено сравнение тепло- и электропроводящих свойств монокристаллов двухкомпонентных твердых растворов Pb1−xScxF2+x, Pb1−xCdxF2 (тип CaF2) и однокомпонентных фторидов β-PbF2 (тип CaF2), ScF3 (тип ReO3).
Индексирование
Scopus
Crossref
Высшая аттестационная комиссия
При Министерстве образования и науки Российской Федерации