RAS Chemistry & Material ScienceНеорганические материалы Inorganic Materials

  • ISSN (Print) 0002-337X
  • ISSN (Online) 3034-5588

Оптическая керамика MgO, полученная горячим прессованием с использованием LiF

PII
10.31857/S0002337X24090089-1
DOI
10.31857/S0002337X24090089
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 60 / Issue number 9-10
Pages
1136-1145
Abstract
Неорганические материалы, Оптическая керамика MgO, полученная горячим прессованием с использованием LiF
Keywords
Date of publication
14.10.2024
Year of publication
2024
Number of purchasers
0
Views
2

References

  1. 1. Harris D.C. Durable 3–5 μm transmitting infrared window materials // Infrared Phys. Technol. 1998. V. 39. № 4. P. 185–201. https://doi.org/10.1016/S1350-4495 (98)00006-1
  2. 2. McCarthy D.E. Transmission of Irtran Materials from 50 μ, to 300 μ // Appl. Opt. 1966. V. 5. № 3. P. 472–473. https://doi.org/10.1364/AO.5.0472_1
  3. 3. Kato T., Okada G., Yanagida T. Optical, scintillation and dosimeter properties of MgO transparent ceramic doped with Mn2+ // J. Ceram. Soc. Jpn. 2016. V. 124. № 5. P. 559–563. https://doi.org/10.2109/jcersj2.15229
  4. 4. Kato T., Okada G., Yanagida T. Dosimeter properties of MgO transparent ceramic doped with C // Radiat. Meas. 2016. V. 92. P. 93–98. https://doi.org/10.1016/j.radmeas.2016.07.004
  5. 5. Kato T., Okada G., Kawaguchi N. et al. Dosimeter properties of Ce-doped MgO transparent ceramics // J. Lumin. 2017. V. 192. P. 316–320. https://doi.org/10.1016/j.jlumin.2017.06.067
  6. 6. Kumamoto N., Kato T., Kawano N. et al. Scintillation and dosimeter properties of Ca-doped MgO transparent ceramics // Nucl. Instrum. Methods Phys. Res., Sect. B. 2018. V. 435. P. 313–317. https://doi.org/10.1016/j.nimb.2018.01.023
  7. 7. Kato T., Okada G., Yanagida T. Optical, scintillation and dosimeter properties of MgO transparent ceramic and single crystal // Ceram. Int. 2016. V. 42. № 5. P. 5617–5622. https://doi.org/10.1016/j.ceramint.2015.12.070
  8. 8. Chen X., Zhang G., Tomala R. et al. Yb doped MgO transparent ceramics generated through the SPS method // J. Eur. Ceram. Soc. 2022. V. 42. № 10. P. 4320–4327. https://doi.org/10.1016/j.jeurceramsoc.2022.04.025
  9. 9. Permin D.A., Belyaev A.V., Koshkin V.A., Balabanov S.S., Boldin M.S., Ladenkov I.V., Fedotova I.G. Effect of Hot Pressing Conditions on the Microstructure and Optical Properties of MgO–Y2O3 Composite Ceramics // Inorg. Mater. 2021. V. 57. № 8. P. 858–866. https://doi.org/10.1134/S0020168521080082
  10. 10. Permin D.A., Belyaev A.V., Balabanov S.S., Koshkin V.A., Boldin M.S., Novikova A.V., Timofeev O.V., Gashpar Zh.K., Ladenkov I.V. Effect of Composition on the Structure and Properties of MgO/Y2O3 Composite Ceramics // Inorg. Mater. 2022. V. 58. № 6. P. 643–650. https://doi.org/10.1134/S0020168522060085
  11. 11. Gild J., Floyd A., Sadowski B. et al. Temperature dependence of carbon contamination in spark plasma sintered Y2O3 // J. Eur. Ceram. Soc. 2024. V. 44. № 6. P. 4255–4259. https://doi.org/10.1016/j.jeurceramsoc.2023.12.100
  12. 12. Jiang N., Xie R., Liu Q. et al.Fabrication of sub-micrometer MgO transparent ceramics by spark plasma sintering // J. Eur. Ceram. Soc. 2017. V. 37. № 15. P. 4947–4953. https://doi.org/10.1016/j.jeurceramsoc.2017.06.021
  13. 13. Fang Y., Agrawal D., Skandan G. et al. Fabrication of translucent MgO ceramics using nanopowders // Mater. Lett. 2004. V. 58. № 5. P. 551–554. https://doi.org/10.1016/S0167-577X (03)00560-3
  14. 14. Balabanov S.S., Belyaev A.V., Novikova A.V., Permin D.A., Rostokina E.Ye., Yavetskiy R.P. Densification Peculiarities of Transparent MgAl2O4 Ceramics—Effect of LiF Sintering Additive // Inorg. Mater. 2018. V. 54. № 10. P. 1045–1050. https://doi.org/10.1134/S0020168518100023
  15. 15. Zhou Z., Li X., Huang Q. et al. Effect of CaO additive on the densification of MgO and MgO-YGAG:Ce ceramics // Ceram. Int. 2023. V. 49. № 11. P. 17340–17347. https://doi.org/10.1016/j.ceramint.2023.02.101
  16. 16. Chen X., Wu Y. Fabrication and optical properties of highly transparent MgO ceramics by spark plasma sintering // Scr. Mater. 2019. V. 162. P. 14–17. https://doi.org/10.1016/j.scriptamat.2018.10.022
  17. 17. Charvat F.R., Kingery W.D. Thermal Conductivity: XIII. Effect of Microstructure on Conductivity of Single‐Phase Ceramics // J. Am. Ceram. Soc. 1957. V. 40. № 9. P. 306–315. https://doi.org/10.1111/j.1151-2916.1957.tb12627.x
  18. 18. Slack G.A. Thermal Conductivity of MgO, Al2O3, MgAl2O4, and Fe3O4 Crystals from 3° to 300°K // Phys. Rev. 1962. V. 126. № 2. P. 427–441. https://doi.org/10.1103/PhysRev.126.427
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library