- PII
- 10.31857/S0002337X24070045-1
- DOI
- 10.31857/S0002337X24070045
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 60 / Issue number 7
- Pages
- 811-818
- Abstract
- Неорганические материалы, Временная динамика экситонной и рекомбинационной люминесценции квантовых точек CdTe/SiO2 (ядро/оболочка)
- Keywords
- Date of publication
- 01.07.2024
- Year of publication
- 2024
- Number of purchasers
- 0
- Views
- 35
References
- 1. Behrle R., Krause V., Seifner M.S., Köstler B., Dick K.A., Wagner M., Sistani M., Barth S. Electrical and Structural Properties of Si1−xGex Nanowires Prepared from a Single-Source Precursor // Nanomaterials. 2023. V. 13. № 4. P. 627. https://doi.org/10.3390/nano13040627
- 2. Дайбаге Д.С., Захарчук И.А., Осадченко А.В., Селюков А.С., Амброзевич С.А., Скориков М.Л., Васильев Р.Б. Люминесцентные и колориметрические свойства ультратонких наносвитков селенида кадмия // Кр. Сообщ. по физике ФИАН. 2023. T. 50. № 11. С. 83–91.
- 3. Meliakov S.R., Belykh V.V., Kalitukha I.V., Golovatenko A.A., Di Giacomo A., Moreels I., Rodina A.V., Yakovlev D.R. Coherent Spin Dynamics of Electrons in CdSe Colloidal Nanoplatelets // Nanomaterials. 2023. V. 13. № 23. P. 3077. https://doi.org/10.3390/nano13233077
- 4. Grevtseva I., Ovchinnikov O., Smirnov M., Perepelitsa A., Chevychelova T., Derepko V., Osadchenko A., Selyukov A. IR Luminescence of Plexcitonic Structures Based on Ag2S/L-Cys Quantum Dots and Au Nanorods // Opt. Express. 2022. V. 30. № 4. P. 4668–4679. https://doi.org/10.1364/OE.447200
- 5. Babaev A.A., Skurlov I.D., Cherevkov S.A., Parfenov P.S., Baranov M.A., Kuzmenko N.K., Koroleva A.V., Zhizhin E.V., Fedorov A.V. PbSe/PbS Core/Shell Nanoplatelets with Enhanced Stability and Photoelectric Properties // Nanomaterials. 2023. V. 13. № 23. P. 3051. https://doi.org/10.3390/nano13233051
- 6. Chae Y.B., Kim S.Y., Choi H.D., Moon D.G., Lee K.H., Kim C.K. Enhancing Efficiency in Inverted Quantum Dot Light-Emitting Diodes through Arginine-Modified ZnO Nanoparticle Electron Injection Layer // Nanomaterials. 2024. V. 14. № 3. P. 266. https://doi.org/10.3390/nano14030266
- 7. Tosa K., Ding C., Chen S., Hayase S., Shen Q. Classifying the Role of Surface Ligands on the Passivation and Stability of Cs2NaInCl6 Double Perovskite Quantum Dots // Nanomaterials. 2024. V. 14. № 4. P. 376. https://doi.org/10.3390/nano14040376
- 8. Дайбаге Д.С., Амброзевич, С.А., Перепелица А.С., Захарчук И.А., Осадченко А.В., Безверхняя Д.М., Авраменко А.И., Селюков А.С. Спектральные и кинетические свойства квантовых точек сульфида серебра во внешнем электрическом поле // Научно-технический вестн. информационных технологий, механики и оптики. 2022 Т. 22. № 6. С. 1098–1103. https://doi.org/10.17586/2226-1494-2022-22-6-1098-1103
- 9. Derepko V.N., Ovchinnikov O.V., Smirnov M.S., Grevtseva I.G., Kondratenko T.S., Selyukov A.S., Turishchev S.Y. Plasmon-Exciton Nanostructures, Based on CdS Quantum Dots with Exciton and Trap State Luminescence // J. Lumin. 2022. V. 248. P. 118874. https://doi.org/10.1016/j.jlumin.2022.118874
- 10. Korepanov O., Kozodaev D., Aleksandrova O., Bugrov A., Firsov D., Kirilenko D., Mazing D., Moshnikov V., Shomakhov Z. Temperature-and Size-Dependent Photoluminescence of CuInS2 Quantum Dots // Nanomaterials. 2023. V. 13. № 21. P. 2892. https://doi.org/10.3390/nano13212892
- 11. Ovchinnikov O.V., Smirnov M.S., Korolev N.V., Golovinski P.A., Vitukhnovsky A.G. The Size Dependence Recombination Luminescence of Hydrophilic Colloidal CdS Quantum Dots in Gelatin // J. Lumin. 2016. V. 179. P. 413–419. https://doi.org/10.1016/j.jlumin.2016.07.016
- 12. Yu W. W., Qu L., Guo W., Peng X. Experimental Determination of the Extinction Coefficient of CdTe, CdSe, and CdS Nanocrystals // Chem. Mater. 2003. V. 15. № 14. P. 2854–2860. https://doi.org/10.1021/cm034081k
- 13. Bhakti B., Datta S., Ghosh M. Influence of Spatial Extension of Impurity on the Nonlinear Optical Properties of Doped GaAs Quantum Dot in Presence of Noise // Mod. Phys. Lett. B. 2024. V. 38. № 5. P. 2350242. https://doi.org/10.1142/S0217984923502421
- 14. Ovchinnikov O.V., Smirnov M.S., Chevychelova T.A., Zvyagin A.I., Selyukov A.S. Nonlinear Absorption Enhancement of Methylene Blue in the Presence of Au/SiO2 Core/Shell Nanoparticles // Dyes Pigments. 2022. V. 197. P. 109829. https://doi.org/10.1016/j.dyepig.2021.109829
- 15. Кондратенко Т.С., Гревцева И.Г., Звягин А.И., Овчинников О.В., Смирнов М.С. Люминесцентные и нелинейно-оптические свойства гибридных ассоциатов квантовых точек Ag2S с молекулами тиазиновых красителей // Оптика и спектроскопия. 2018. Т. 124. № 5. С. 640–647. https://doi.org/10.21883/OS.2018.05.45945.310-17
- 16. Deng Z., Guyot-Sionnest P. Intraband Luminescence from HgSe/CdS Core/Shell Quantum Dots // ACS Nano. 2016. V. 10. № 2. P. 2121–2127. https://doi.org/10.1021/acsnano.5b06527
- 17. Grevtseva I.G., Ovchinnikov O.V., Smirnov M.S., Perepelitsa A.S., Chevychelova T.A., Derepko V.N., Osadchenko A.V., Selyukov A.S. The Structural and Luminescence Properties of Plexcitonic Structures Based on Ag2S/ l-Cys Quantum Dots and Au Nanorods // RSC Adv. 2022. V. 12. № 11. P. 6525–6532. https://doi.org/10.1039/D1RA08806H
- 18. Дайбаге Д. С. Спектральные и кинетические характеристики свернутых в виде свитков ультратонких нанопластин селенида кадмия // Научно-технический вестн. информационных технологий, механики и оптики. 2023. Т. 23. № 5. С. 920–926. https://doi.org/10.17586/2226-1494-2023-23-5-920-926
- 19. Du J., Feng A., Poelman D. Temperature Dependency of Trap‐Controlled Persistent Luminescence // Laser Photonics Rev. 2020. V. 14. № 8. P. 2000060. https://doi.oxrg/10.1002/lpor.202000060
- 20. Wang Z., Huang Z., Liu G., Cai B., Zhang S., Wang Y. In‐Situ and Reversible Enhancement of Photoluminescence from CsPbBr3 Nanoplatelets by Electrical Bias // Adv. Opt. Mater. 2021. V. 9. № 15. P. 2100346. https://doi.org/10.1002/adom.202100346
- 21. Дайбаге Д.С., Амброзевич С.А., Перепелица А.С., Захарчук И.А., Смирнов М.С., Овчинников О.В., Асланов С.В., Осадченко А.В., Селюков А.С. Влияние электрического поля на рекомбинационную люминесценцию коллоидных квантовых точек сульфида серебра // Вестн. МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2023. № 3. С. 100–117. https://doi.org/10.18698/1812-3368-2023-3-100-117
- 22. Муравицкая А.О., Гуринович Л.И., Прудников А.В., Артемьев М.В., Гапоненко С.В. Влияние внешнего электрического поля на фотолюминесценцию коллоидных наночастиц CdSe различной топологии // Оптика и спектроскопия. 2017. Т. 122. № 1. С. 91–95. https://doi.org/10.7868/S0030403417010214
- 23. Nakabayashi T., Ohshima R., Ohta N. Electric Field Effects on Photoluminescence of CdSe Nanoparticles in a PMMA Film // Crystals. 2014. V. 4. № 2. P. 152–167. https://doi.org/10.3390/cryst4020152
- 24. Kushavah D., Mohapatra P.K., Ghosh P., Singh M., Vasa P., Bahadur D., Singh B.P. Photoluminescence Characteristics of CdSe Quantum Dots: Role of Exciton–Phonon Coupling and Defect/Trap States // Mater. Res. Express. 2017. V. 4. № 7. P. 075007. https://doi.org/10.1088/2053-1591/aa7a4f
- 25. de Mello Donegá C., Bode M., Meijerink A. Size-and Temperature-Dependence of Exciton Lifetimes in CdSe Quantum Dots // Phys. Rev. B. 2006. V. 74. № 8. P. 085320. https://doi.org/10.1103/PhysRevB.74.085320
- 26. Vitukhnovsky A.G., Selyukov A.S., Solovey V.R., Vasiliev R.B., Lazareva E.P. Photoluminescence of CdTe Colloidal Quantum Wells in External Electric Field // J. Lumin. 2017. V. 186. P. 194–198. https://doi.org/10.1016/j.jlumin.2017.02.041
- 27. Moon H., Lee C., Lee W., Kim J., Chae H. Stability of Quantum Dots, Quantum Dot Films, and Quantum Dot Light‐Emitting Diodes for Display Applications // Adv. Mater. 2019. V.31. № 34. P. 1804294. https://doi.org/10.1002/adma.201804294
- 28. Patra S., Samanta A. Effect of Capping Agent and Medium on Light-Induced Variation of the Luminescence Properties of CdTe Quantum Dots: a Study Based on Fluorescence Correlation Spectroscopy, Steady State and Time-Resolved Fluorescence Techniques // J. Phys. Chem. C. 2014. V. 118. № 31. P. 18187–18196. https://doi.org/10.1021/jp5048216
- 29. Malashin I.P., Daibagya D.S., Tynchenko V.S., Nelyub V.A., Borodulin A.S., Gantimurov A.P., Ambrozevich S.A., Selyukov A.S. ML-based Forecasting of Temporal Dynamics in Luminescence Spectra of Ag2S Colloidal Quantum Dots // IEEE Access. 2024. V. 12. P. 53320–53334. https://doi.org/10.1109/ACCESS.2024.3387024
- 30. Zaini M.S., Ying Chyi Liew J., Alang Ahmad S.A., Mohmad A.R., Kamarudin M.A. Quantum Confinement Effect and Photoenhancement of Photoluminescence of PbS and PbS/MnS Quantum Dots // Appl. Sci. 2020. V. 10. № 18. P. 6282. https://doi.org/10.3390/app10186282
- 31. Cordero S.R., Carson P.J., Estabrook R.A., Strouse G.F., Buratto S.K. Photo-Activated Luminescence of CdSe Quantum Dot Monolayers // J. Phys. Chem. B. 2000. V. 104. № 51. P. 12137–12142. https://doi.org/10.1021/jp001771s
- 32. Aldana J., Wang Y.A., Peng X. Photochemical Instability of CdSe Nanocrystals Coated by Hydrophilic Thiols // JACS. 2001. V. 123. № 36. P. 8844–8850. https://doi.org/10.1021/ja016424q
- 33. Carrillo-Carrión C., Cárdenas S., Simonet B.M., Valcárcel M. Quantum Dots Luminescence Enhancement due to Illumination with UV/Vis Light // Chem. Commun. 2009. № 35. P. 5214–5226. https://doi.org/10.1039/B904381K
- 34. Cai Q., Zhou H., Lu F. Enhanced Infrared Response of Si Base p–n Diode with Self-Assembled Ge Quantum Dots by Thermal Annealing // Appl. Surf. Sci. 2008. V. 254. № 11. P. 3376–3379. https://doi.org/10.1016/j.apsusc.2007.11.019
- 35. Bao H., Gong Y., Li Z., Gao M. Enhancement Effect of Illumination on the Photoluminescence of Water-Soluble CdTe Nanocrystals: Toward Highly Fluorescent CdTe/CdS Core−Shell Structure // Chem. Mater. 2004. V. 16. № 20. P. 3853–3859. https://doi.org/10.1021/cm049172b
- 36. Shim H.S., Ko M., Nam S., Oh J. H., Jeong S., Yang Y., Park S.M., Do Y.R., Song J.K. InP/ZnSeS/ ZnS Quantum Dots with High Quantum Yield and Color Purity for Display Devices // ACS Appl. Nano Mater. 2023. V. 6. № 2. P.1285–1294. https://doi.org/10.1021/acsanm.2c04936
- 37. Dabbousi B.O., Rodriguez-Viejo J., Mikulec F.V., Heine J.R., Mattoussi H., Ober R., Jensen K.F., Bawendi M.G. (CdSe)ZnS Core−Shell Quantum Dots: Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites // J. Phys. Chem. B. 1997. V. 101. № 46. P. 9463–9475. https://doi.org/10.1021/jp971091y
- 38. Van Sark W.G., Frederix P.L., Van den Heuvel D.J., Gerritsen H.C., Bol A.A., Van Lingen J.N., de Mello Donegá C., Meijerink A. Photooxidation and Photobleaching of Single CdSe/ZnS Quantum Dots Probed by Room-Temperature Time-Resolved Spectroscopy // J. Phys. Chem. B. 2001. V. 105. № 35. P. 8281–8284. https://doi.org/10.1021/jp012018h
- 39. Daibagya D.S, Ambrozevich S.A., Zakharchuk I.A., Osadchenko A.V., Smirnov M.S., Ovchinnikov O.V., Selyukov A.S. Emission behaviour of CdTe/SiO2 Core/Shell Quantum Dots in External Electric Field // Opt. Mater. 2024. V. 150. P. 115297. https://doi.org/10.1016/j.optmat.2024.115297
- 40. Sathyamoorthy R., Sudhagar P., Kumar R. S., Sathyadevan T. M. Low-Temperature Synthesis of Thiol-Functionalized CdTe Nanoclusters with Different Tellurium Contents // Cryst. Res. Technol. 2010. V. 45. № 1. P. 99–103. https://doi.org/10.1002/crat.200900479
- 41. Llopis M.V., Rodríguez J.C.C., Martín F.J.F., Coto A.M., Fernandez-Argueelles M.T., Costa-Fernández J.M., Sanz-Medel A. Dynamic Analysis of the Photoenhancement Process of Colloidal Quantum Dots with Different Surface Modifications // Nanotechnology. 2011. V. 22. № 38. P. 385703. https://doi.org/10.1088/0957-4484/22/38/385703