RAS Chemistry & Material ScienceНеорганические материалы Inorganic Materials

  • ISSN (Print) 0002-337X
  • ISSN (Online) 3034-5588

Синтез методом твердофазных реакций и исследование структурных особенностей соединения Cu3NaS2

PII
10.31857/S0002337X24060031-1
DOI
10.31857/S0002337X24060031
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 60 / Issue number 6
Pages
673-680
Abstract
Неорганические материалы, Синтез методом твердофазных реакций и исследование структурных особенностей соединения Cu3NaS2
Keywords
Date of publication
15.06.2024
Year of publication
2024
Number of purchasers
0
Views
15

References

  1. 1. Линник Д.С., Полищук Т.Б., Глазунова В.А., Жеребцов Д.А., Винник Д.А., Могила Т.Н., Алешкина Д.В. Натриевые химические источники тока с катодами на основе сульфидов меди // Вестн. ЮУрГУ. Сер. Химия. 2019. Т. 11. № 4. С. 85–92. https://doi.org/10.14529/chem190410
  2. 2. Klein F., Jache B., Bhide A., Adelhelm P. Conversion Reactions for Sodium-ion Batteries // Phys. Chem. Chem. Phys. 2013. V. 15. Р. 15876. https://doi.org/10.1039/c3cp52125g
  3. 3. Wu Y., Wadia C., Ma W., Sadtler B., Alivisatos A.P. Synthesis and Photovoltaic Application of Copper(I) Sulfide Nanocrystals // Nano Lett. 2008. V. 8. № 8. P. 2551–2555. https://doi.org/10.1021/nl801817d
  4. 4. Tamura T., Hasegawa T., Terabe K., Nakayama T., Sakamoto T., Sunamura H., Aono M. Material Dependence of Switching Speed of Atomic Switches Made from Silver Sulfide and from Copper Sulfide // J. Phys.: Conf. Ser. 2007. V. 61. № 1. P. 1157–1161. https://doi.org/10.1088/1742-6596/61/1/229
  5. 5. Quintana-Ramirez P.V., Arenas-Arrocena Ma. C., Santos-Cruz J., Vega-González M., Martínez-Alvarez O., Castaño-Meneses V.M., Acosta-Torres L.S., de la Fuente-Hernández. Growth Evolution and Phase Transition from Chalcocite to Digenite in Nanocrystalline Copper Sulfide: Morphological, Optical and Electrical Properties // Beilstein J. Nanotechnol. 2014. V. 5. P. 1542–1452. https://doi.org/10.3762/bjnano.5.166
  6. 6. Muradov M.B., Nuriev M.A., Eivazova G.M. Sensitivity of Composites Based on Gelatin and Nanoparticles Cu2S and CdS to Vapors of Some Organic Compounds // Surf. Eng. Appl. Electrochem. 2007. V. 43. P. 512–515. https://doi.org/10.3103/S1068375507060208
  7. 7. Tang Y. Q., Ge Z. H., Feng J. Synthesis and Thermoelectric Properties of Copper Sulfides via Solution Phase Methods and Spark Plasma Sintering // Crystals. 2017. V. 7. № 5. P. 141. https://doi.org/10.3390/cryst7050141
  8. 8. Ge Z.H., Liu X., Feng D., Lin J., He J. High‐Performance Thermoelectricity in Nanostructured Earth‐Abundant Copper Sulfides Bulk Materials // Adv. Energy Mater. 2016. V. 6. № 16. Р. 1600607. https://doi.org/10.1002/aenm.201600607
  9. 9. Дмитриев А.В., Звягин И.П. Современные тенденции развития физики термоэлектрических материалов // УФН. 2010. Т. 80. № 8. С. 821–838. https://doi.org/10.3367/UFNr.0180.201008b.0821.
  10. 10. Gelbstein Y, Dashevsky Z, Dariel M.P. High Performance n-type PbTe-based Materials for Thermoelectric Applications // Physica B. 2005.V. 363. P. 196–205. https://doi.org/10.1016/j.physb.2005.03.022
  11. 11. Mahan G.D. Figure of Merit for Thermoelectrics // J. Appl. Phys. 1989. V. 65. P. 1578–1583. https://doi.org/10.1063/1.342976
  12. 12. Sofo J.O., Mahan G.D. Optimum Band Gap of a Thermoelectric Material // Phys. Rev. B. 1994. V. 49. № 7. P. 4565. https://doi.org/10.1103/PhysRevB.49.4565-4570
  13. 13. Heremans J.P., Jovovic V., Toberer E.S., Saramat A., Kurosaki K., Charoenphakdee A., Yamanaka S., Snyder G.J. Enhancement of Thermoelectric Efficiency in PbTe by Distortion of the Electronic Density of States // Science. 2008. V. 321. P. 554. https://doi.org/10.1126/science.1159725
  14. 14. Li J., Liu W., Zhao Li., Zhou M. High-performance Nanostructured Thermoelectric Materials // NPG Asia Mater. 2010. V. 2. № 4. P. 152–158. https://doi.org/10.1038/asiamat.2010.138
  15. 15. Chen Y.X., Zhang B.P., Ge Z.H., Shang P.Р. Preparation and Thermoelectric Properties of Ternary Superionic Conductor CuCrS2 // J. Solid State Chem. 2012. V. 186. P. 109–115. https://doi.org/10.1016/j.jssc.2011.11.040
  16. 16. Zhang Y. X., Ma Z., Ge Z. H., Qin P., Zheng F., Feng J. Highly Enhanced Thermoelectric Properties of Cu1.8S by Introducing PbS // J. Alloys Compd. 2018. V. 764. P. 738–744. https://doi.org/10.1016/j.jallcom.2018.06.116
  17. 17. Ure Jr. R.W. Effect of Impurity Scattering on the Figure of Merit of Thermoelectric Materials // J. Appl. Phys. 1959. V. 30. P. 1922–1924. https://doi.org/10.1063/1.1735090
  18. 18. Гуриева Е.А., Константинов П.П., Прокофьева Л.В., Равич Ю.И., Федоров М.И. Термоэлектрическая эффективность твердых растворов с рассеянием фононов на нецентральных примесях // ФТП. 2003. Т. 37. № 3. С. 292–298.
  19. 19. Du B.L., Li H., Xu J.J., Tang X.F., Uher C. Enhanced Thermoelectric Performance and Novel Nanopores in AgSbTe 2 Prepared by Melt Spinning // J. Solid State Chem. 2011. V. 184 P. 109–114. https://doi.org/10.1016/j.jssc.2010.10.036
  20. 20. Zhu Z., Zhang Y., Song H., Li X. High Thermoelectric Performance and Low Thermal Conductivity in Cu 2-x Na x Se Bulk Materials with Micro-pores // Appl. Phys. A. 2019. V. 125. P. 572. https://doi.org/10.1007/s00339-019-2870-8
  21. 21. Tretiakov O. A., Abanov A., Murakami S., Sinova J. Large Thermoelectric Figure of Merit for Three-dimensional Topological Anderson Insulators via Line Dislocation Engineering // App. Phys. Lett. 2010. V. 97. Р. 073108. https://doi.org/10.1063/1.3481382
  22. 22. Vineis C.J., Shakouri A., Majumdar A., Kanatzidis M.G. Nanostructured Thermoelectrics: Big Efficiency Gains from Small Features // Adv. Mater. 2010. V. 22. P. 3970–3980.
  23. 23. Lan Y.C., Minnich A.J., Chen G., Ren Z.F. Enhancement of Thermoelectric Figure-of-merit by a Bulk Nanostructuring Approach // Adv. Funct. Mater. 2010. V. 20. P. 357–376. https://doi.org/10.1002/adfm.200901512
  24. 24. Liu, H., Shi, X., Xu, F., Zhang, L., Zhang, W., Chen, L., Snyder, G. J. Copper Ion Liquid-like Thermoelectrics // Nature Mater. 2012. V. 11. № 5. P. 422–425. https://doi.org/10.1038/NMAT3273
  25. 25. Balapanov M. Kh., Ishembetov R.Kh., Kuterbekov K.A., Kubenova M.M., Almukhametov R.F., Yakshibaev R.A Transport Phenomena in Superionic Na х Cu 2-х S (х = 0.05; 0.1; 0.15; 0.2) Compounds // Ionics. 2018. V. 24. № 5. P. 1349–1356. https://doi.org/10.1007/s11581-017-2299-z
  26. 26. Zhang X., Kanatzidis M. G., Hogan T., Kannewurf C. R. NaCu 4 S 4 , a Simple New Low-Dimensional, Metallic Copper Polychalcogenide, Structurally Related to CuS // J. Am. Chem. Soc. 1996. V. 118. № 3. P. 693–694. https://doi.org/10.1021/ja952982r
  27. 27. Savelsberg G., Schäfer H. Zur Kenntnis von Na 2 Cu 4 S 3 und KCu 3 Te 2 // Mater. Res. Bull. 1981. V. 16. № 10. P. 1291–1297.
  28. 28. Yong W., She Y., Qing F., Ao W. Hydrothermal Synthesis of K, Na Doped Cu-S Nanocrystalline and Effect of Doping on Crystal Structure and Performance // Acta Phys. Sin. 2013. V. 62. № 17. P. 178102. https://doi.org/10.7498/aps.62.178102
  29. 29. Гороновский И.Т., Назаренко Ю.П., Некряч Е.Ф. Краткий справочник по химии. Киев: Наук. думка, 1987. 829 с.
  30. 30. Русаков А.А. Рентгенография металлов. М.: Атомиздат, 1977. 482 с. http:// doi.org/database.iem.ac.ru/mincryst/
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library