RAS Chemistry & Material ScienceНеорганические материалы Inorganic Materials

  • ISSN (Print) 0002-337X
  • ISSN (Online) 3034-5588

Влияние температурного воздействия и окислительной среды на свойства карбидокремниевого волокна

PII
10.31857/S0002337X24050034-1
DOI
10.31857/S0002337X24050034
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 60 / Issue number 5
Pages
543-554
Abstract
Неорганические материалы, Влияние температурного воздействия и окислительной среды на свойства карбидокремниевого волокна
Keywords
Date of publication
01.05.2024
Year of publication
2024
Number of purchasers
0
Views
43

References

  1. 1. Li L., Jian K., Wang Y. Oxidation Behavior of Continuous SiC Fibers in Static Air // 4th Int. Conf. on Sensors, Measurement and Intelligent Materials (ICSMIM 2015). 2016. P. 526–530. https://doi.org/10.2991/icsmim-15.2016.97
  2. 2. Yang C., Wu J., Ditta A., Wei L., Zhao Z., Wu S. Effects of Temperature and Atmosphere on Microstructural Evolution and Mechanical Properties of KD-II SiC Fibers // Ceram. Int. 2020. V. 46. № 15. P. 24424–24434. https://doi.org/10.1016/j.ceramint.2020.06.225
  3. 3. Naslain R., Christin F. SiC-Matrix Composite Materials for Advanced Jet Engines // MRS Bull. 2003. V. 28. № 9. P. 654–658. https://doi.org/10.1557/mrs2003.193
  4. 4. Hay R.S., Chater R.J. Oxidation Kinetics and Strength of Hi-NicalonTM-S SiC Fiber after Oxidation in Dry and Wet Air // J. Am. Ceram. Soc. 2017. V. 100. № 9. P. 4110–4130. https://doi.org/10.1111/jace.14833
  5. 5. Wilson M., Opila E. A Review of SiC Fiber Oxidation with a New Study of Hi-Nicalon SiC Fiber Oxidation // Adv. Eng. Mater. 2016. V. 18. № 10. P. 1698–1709. https://doi.org/10.1002/adem.201600166
  6. 6. Hay R.S., Mogilevsky P. Model for SiC Fiber Strength after Oxidation in Dry and Wet Air // J. Am. Ceram. Soc. 2019. V. 102. № 1. P. 397–415. https://doi.org/10.1111/jace.15907
  7. 7. Cao S., Wang J., Wang H. Effect of Heat Treatment on the Microstructure and Tensile Strength of KD-II SiC Fibers // Mater. Sci. Eng., A. 2016. V. 673. P. 55–62. https://doi.org/10.1016/j.msea.2016.07.066
  8. 8. Zhu Y.T., Taylor S.T., Stout M.G., Butt D.P., Lowe T.C. Kinetics of Thermal, Passive Oxidation of Nicalon Fibers // J. Am. Ceram. Soc. 1998. V. 81. № 3. P. 655–660. https://doi.org/10.1111/j.1151-2916.1998.tb02386.x
  9. 9. Hay R.S., Fair G.E., Bouffioux R., Urban E., Morrow J., Hart A., Wilson M. Hi-Nicalon-S SiC Fiber Oxidation and Scale Crystallization Kinetics // J. Am. Ceram. Soc. 2011. V. 94. № 11. P. 3983–3991. https://doi.org/10.1111/j.1551-2916.2011.04647.x
  10. 10. Gauthier W., Pailler F., Lamon J., Pailler R. Oxidation of Silicon Carbide Fibers during Static Fatigue in Air at Intermediate Temperatures // J. Am. Ceram. Soc. 2009. V. 92. № 9. P. 2067–2073. https://doi.org/10.1111/j.1551-2916.2009.03180.x
  11. 11. Sha J.J., Nozawa T., Park J.S., Katoh Y., Kohyama A. Effect of Heat Treatment on the Tensile Strength and Creep Resistance of Advanced SiC Fibers // J. Nucl. Mater. 2004. V. 329–333. P. 592–596. https://doi.org/10.1016/j.jnucmat.2004.04.123
  12. 12. Прокип В.Э., Лозанов В.В., Банных Д.А., Бакланова Н.И. Влияние термообработки на механическую прочность бескерновых карбидокремниевых волокон // Неорган. материалы. 2020. Т. 56. № 3. С. 253–260. https://doi.org/10.31857/S0002337X2003015X
  13. 13. Deal B.E., Grove A.S. General Relationship for the Thermal Oxidation of Silicon // J. Appl. Phys. 1965. V. 36. № 12. P. 3770–3778. https://doi.org/10.1063/1.1713945
  14. 14. Mazerat S., Lacroix J., Rufino B., Pailler R. Carbon Derived from Silicon Carbide Fibers, a Comparative Study // Mater. Today Commun. 2019. V. 19. P. 177–185. https://doi.org/10.1016/j.mtcomm.2019.01.013
  15. 15. Zu M., Zou S.M., Han S., Liu H.T. Effects of Heat Treatment on the Microstructures and Properties of KD-I SiC Fibres // Mater. Res. Innovations. 2015. V. 19. Supl. №1. P. S1–4 37--S1–4 41. https://doi.org/10.1179/1432891715Z.0000000001587
  16. 16. Lee Y. The Second Order Raman Spectroscopy in Carbon Crystallinity // J. Nucl. Mater. 2004. V. 325. № 2–3. P. 174–179. https://doi.org/10.1016/j.jnucmat.2003.12.005
  17. 17. Kim J., Tlali S., Jackson H.E., Webb J.E., Singh R.N. A Micro-Raman Investigation of the SCS-6 SiC Fiber // J. Appl. Phys. 1997. V. 82. № 1. P. 407–412. https://doi.org/10.1063/1.365828
  18. 18. Malard L.M., Pimenta M.A., Dresselhaus G., Dresselhaus M.S. Raman Spectroscopy in Graphene // Phys. Rep. 2009. V. 473. № 5–6. P. 51–87. https://doi.org/10.1016/j.physrep.2009.02.003
  19. 19. Yajima S., Okamura K., Hayashi J., Omori M. Synthesis of Continuous SiC Fibers with High Tensile Strength // J. Am. Ceram. Soc. 1976. V. 59. № 7–8. P. 324–327. https://doi.org/10.1111/j.1151-2916.1976.tb10975.x
  20. 20. Wang H., Gao S., Peng S., Zhou X., Zhang H., Zhou X., Li B. KD-S SiCf/SiC Composites with BN Interface Fabricated by Polymer Infiltration and Pyrolysis Process // J. Adv. Ceram. 2018. V. 7. № 2. P. 169–177. https://doi.org/10.1007/s40145-018-0268-2
  21. 21. Zakirov A.S., Navamathavan R., Jang Y.J., Jung A.S., Lee K.-M., Choi C.K. Comparative Study on the Structural and Electrical Properties of Low-k SiOC(-H) Films Deposited by Using Plasma Enhanced Chemical Vapor Deposition // J. Korean Phys. Soc. 2007. V. 50. № 6. P. 1809–1813. https://doi.org/10.3938/jkps.50.1809
  22. 22. Kopáni M., Jergel M., Kobayashi H., Takahashi M., Brunner R., Mikula M., Imamura K., Jurečka S., Pinčík E. On Determination of Properties of Ultrathin and Very Thin Silicon Oxide Layers by FTIR and X-ray Reflectivity // MRS Proc. 2008. V. 1066. https://doi.org/10.1557/PROC-1066-A07-03
  23. 23. Nyahumwa C. Multiple Defect Distributions on Weibull Statistical Analysis of Fatigue Life of Cast Aluminium Alloys // African J. Sci. Technol. 2005. V. 6. № 2. P. 43–54. https://doi.org/10.4314/ajst.v6i2.55174
  24. 24. Thomason J.L. On the Application of Weibull Analysis to Experimentally Determined Single Fibre Strength Distributions // Compos. Sci. Technol. 2013. V. 77. P. 74–80. https://doi.org/10.1016/j.compscitech.2013.01.009
  25. 25. Mazerat S., Pailler R. Oxidation Behavior of Si-C-O-(Ti) Fibers from 450° to 1140°С : Comparing the Kinetic of Oxide Scale Growth to the Slow Crack Growth // J. Eur. Ceram. Soc. 2024. V. 44. № 2. P. 760–775. https://doi.org/10.1016/j.jeurceramsoc.2023.09.070
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library