RAS Chemistry & Material ScienceНеорганические материалы Inorganic Materials

  • ISSN (Print) 0002-337X
  • ISSN (Online) 3034-5588

Особенности формирования слоистых сульфидно-гидроксидных материалов (валлериитов) в гидротермальных условиях

PII
10.31857/S0002337X24050022-1
DOI
10.31857/S0002337X24050022
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 60 / Issue number 5
Pages
530-542
Abstract
Неорганические материалы, Особенности формирования слоистых сульфидно-гидроксидных материалов (валлериитов) в гидротермальных условиях
Keywords
Date of publication
01.05.2024
Year of publication
2024
Number of purchasers
0
Views
32

References

  1. 1. Roy S., Zhang X., Puthirath A.B., Meiyazhagan A., Bhattacharyya S., Rahman M.M., Babu G., Susarla S., Saju S.K., Tran M.K. Structure, Properties and Applications of Two-Dimensional Hexagonal Boron Nitride // Adv. Mater. 2021. V. 33. P. 2101589. https://doi.org/10.1002/adma.202101589
  2. 2. Urade A.R., Lahiri I., Suresh K.S. Graphene Properties, Synthesis and Applications: A Review // JOM. 2023. V. 75. P. 614–630. https://doi.org/10.1080/10408430903505036
  3. 3. Yang R., Fan Y., Zhang Y., Mei L., Zhu R., Qin J., Hu J., Chen Z., Ng Y.H., Voiry D. 2D Transition Metal Dichalcogenides for Photocatalysis // Ang. Chem. Int. Ed. 2023. V. 62. P. 202218016. https://doi.org/10.1002/anie.202218016
  4. 4. Высоцкий В.В., Дмитриев А.С., Михайлова И.А., Чернышова К.Ф., Суворова О.В., Ревина А.А. Графеновые нанохлопья и гибридные нанокомпозиты с наночастицами золота и серебра: оптические и тепловые свойства // Изв. АН. Сер. хим. 2020. Т. 69. № 1. P. 32–42
  5. 5. Geim A.K. Graphene: Status and Prospects // Science. 2009. V. 324. P. 1530–1534. https://doi.org/10.1126/science.1158877
  6. 6. Кулакова И.И., Лисичкин Г.В. Перспективы применения графеновых наноматериалов: сорбенты, мембраны, газовые сенсоры (обзор) // Журн. прикл. химии. 2021. Т. 94. № 9. С. 1090–1103.
  7. 7. Kloprogge J.T., Hartman H. Clays and the Origin of Life: The Experiments// Life. 2022. V. 12. P. 259. https://doi.org/10.3390/life12020259
  8. 8. 8. Awad A.M, Shaikh S.M.R., Jalab R., Gulied M.H., Nasser M.S., Benamor A., Adham S. Adsorption of Organic Pollutants by Natural and Modified Clays: A Comprehensive Review // Sep. Purif. Technol. 2019. V. 228. P. 115719.
  9. 9. Long M., Wang P., Fang H., Hu W. Progress, Challenges, and Opportunities for 2D Material Based Photodetectors // Adv. Funct. Mater. 2019. V. 29. P. 1803807. https://doi.org/10.1002/adfm.201803807
  10. 10. Hofmeister W., Von Platen H. Crystal Chemistry and Atomic Order in Brucite-related Double-layer Structures // Crystallogr. Rev. 1992. V. 3. P. 3–26. https://doi.org/10.1080/08893119208032964
  11. 11. Vahid Mohammadi A., Rosen J., Gogotsi Y. The World of Two-Dimensional Carbides and Nitrides (MXenes) // Science. 2021. V. 372. P. eabf1581. https://doi.org/10.1126/science.abf1581
  12. 12. Jiang J., Bai S., Zou J., Liu S., Hsu J.P., Li N., Zhu G., Zhuang Z., Kang Q., Zhang Y. Improving Stability of MXenes // Nano Res. 2022. V. 15. P. 6551–6567. https://doi.org/10.1007/s12274-022-4312-8
  13. 13. Kamysbayev V., Filatov A.S., Hu H., Rui X., Lagunas F., Wang D., Klie R.F., Talapin D.V. Covalent Surface Modifications and Superconductivity of Two-Dimensional Metal Carbide MXenes // Science. 2020. V. 369. P. 979–983. https://doi.org/10.1126/science.aba8311
  14. 14. Cavani F., Trifirò F., Vaccari A. Hydrotalcite-type Anionic Clays: Preparation, Properties and Applications // Catal. Today. 1991. V. 11. P. 173–301. https://doi.org/10.1016/0920-5861 (91)80068-K
  15. 15. He Z., Que W. Molybdenum disulfide nanomaterials: Structures, Properties, Synthesis and Recent Progress on Hydrogen Evolution Reaction // Appl. Mater. Today. 2016. V. 3. P. 23–56. https://doi.org/10.1016/j.apmt.2016.02.001
  16. 16. Tedstone A.A., Lewis D.J., O’Brien P. Synthesis, Properties and Applications of Transition Metal-Doped Layered Transition Metal Dichalcogenides // Chem. Mater. 2016. V. 28. P. 1965–1974. https://doi.org/10.1021/acs.chemmater.6b00430
  17. 17. Mikhlin Y.L., Likhatski M.N., Bayukov O.A., Knyazev Y.V., Velikanov D.A., Tomashevich Y.V., Romanchenko A.S., Vorobyev S.A., Volochaev M.V., Meira D.M. Valleriite, a Natural Two-Dimensional Composite: X-ray Absorption, Photoelectron, and Mössbauer Spectroscopy, and Magnetic Characterization // ACS Omega. 2021. V. 6. P. 7533–7543. https://doi.org/10.1021/acsomega.0c06052
  18. 18. Mikhlin Y., Likhatski M., Borisov R., Karpov D., Vorobyev S. Metal Chalcogenide–Hydroxide Hybrids as an Emerging Family of Two-Dimensional Heterolayered Materials: An Early Review // Materials. 2023. V. 16. P. 6381. https://doi.org/10.3390/ma16196381
  19. 19. Evans H.T., Allmann R. The Crystal Structure and Crystal Chemistry of Valleriite // Z. Flir Krist. 1968. V. 127. P. 73–93. https://doi.org/10.1524/zkri.1968.127.16.73
  20. 20. Nickel E.H., Hudson D.R. The Replacement of Chrome Spinel by Chromian Valleriite in Sulphide-Bearing Ultramafic Rocks in Western Australia// Contrib. Mineral. Petrol. 1976. V. 55. P. 265–277. https://doi.org/10.1007/BF00371337
  21. 21. Jambor J.L. Coalingite from the Muskox Intrusion, Northwest Territories // Am. Mineral. 1969. V. 54. P. 437–447.
  22. 22. Pekov I.V., Yapaskurt, V.O., Polekhovsky Y.S., Vigasina M.F., Siidra O.I. Ekplexite (Nb,Mo)S2∙(Mg1−xAlx)(OH)2+x, Kaskasite (Mo,Nb)S2∙(Mg1−xAlx)(OH)2+x and Manganokaskasite (Mo,Nb)S2∙(Mn1−xAlx)(OH)2+x, Three New Valleriite-Group Mineral Species From the Khibiny Alkaline Complex, Kola Peninsula, Russia // Mineral. Mag. 2014. V. 78. P. 663–679. https://doi.org/10.1180/minmag.2014.078.3.14
  23. 23. Soboleva S.V., Evstigneeva T.E., Boeva N.M., Bortnikov N.S. Crystal Structure of Yushkinite [(Mg0.60Al0.30V0.10)Σ1.0(OH)2][V0.875S2]: An Example of a Commensurate Combination of Brucite and Sulfide Layers // Dokl. Earth Sci. 2020. V. 491. P. 210–213. https://doi.org/10.1134/S1028334X20040182
  24. 24. Organova N.I., Drits V.A., Dmitrik A.L. Structural Study ofT. Part I. The Isometric Variety // Soviet Phys. Crystallogr. 1973. V. 17. P. 667–671.
  25. 25. Mikhlin Y., Likhatski M., Romanchenko A., Vorobyev S., Tomashevich Y., Fetisova O., Bayukov O., Knyazev Y., Nemtsev I., Karasev S., Karacharov A., Borisov R. Valleriitecontaining ore From Kingash Deposit (Siberia, Russia): Mössbauer and X-ray Photoelectron Spectroscopy Characterization, Thermal and Interfacial Properties // J. Sib. Fed. Univ. Chem. 2022. V. 15. P. 303–317. http://dx.doi.org/10.17516/1998-2836-0294
  26. 26. Harris D.C., Vaughan D.J. Two Fibrous Iron Sulfides and Valleriite from Cupros, With New Data on Valleriite // Am. Mineral. 1972. V. 57. P. 1037–1053.
  27. 27. Iishi K., Kato T., Takeno S. Syntheses of Valleriite // Am. Mineral. 1970. V. 55. P. 2107–2110.
  28. 28. Takeno S., Moh G.H. Syntheses of Selenian Valleriite // Mineral. Petrol. 1994. V. 50. P. 209–218. https://doi.org/10.1007/BF01164606
  29. 29. Hughes A.E., Kakos G.A., Turney T.W., Williams T.B. Synthesis and Structure of Valleriite, a Layered Metal Hydroxide/Sulfide Composite // J. Solid State Chem. 1993. V. 104. P. 422–436. https://doi.org/10.1006/jssc.1993.1178
  30. 30. Chistyakova N.I., Gubaidulina T.V., Rusakov V.S. Mössbauer Investigations of Natural and Synthetic Tochilinite and Valleriite // Czech. J. Phys. 2006. V. 56. Р. E123–E131.
  31. 31. Gubaidulina T.V., Chistyakova N.I., Rusakov V.S. Mössbauer Study of Layered Iron Hydroxysulfides: Tochilinite and Valleriite // Bull. Russ. Acad. Sci. Phys. 2007. V. 71. P. 1269–1272. https://doi.org/10.3103/S106287380709016X
  32. 32. Chistyakova N.I., Rusakov V.S., Gubaidulina T.V., Gapochka A.M., Bychkov A.Y. Mössbauer Investigations of Synthetic Valleriite // Hyperfine Interact. 2012. V. 208. P. 99–104. https://doi.org/10.1007/s10751-011-0474-6
  33. 33. Mikhlin Y.L., Borisov R.V., Vorobyev S.A., Tomashevich Y.V., Romanchenko A.S., Likhatski M.N., Karacharov A.A., Bayukov O.A., Knyazev Y.V., Velikanov D.A., Zharkov S.M., Krylov A.S., Krylova S.N., Nemtsev I.V. Synthesis and Characterization of Nanoscale Composite Particles Formed by 2D Layers of Cu–Fe Sulfide and Mg-Based Hydroxide // J. Mater. Chem. A. 2022. V. 10. P. 9621–9634. https://doi.org/10.1039/D2TA00877G
  34. 34. Mikhlin Y.L., Borisov R.V, Likhatski M.N., Bajukov O.A., Knyazev Y.V., Zharkov S.M., Vorobyev S.A., Tomashevich Y.V., Ivaneeva A.D., Karacharov A.A., Karpov D.V., Velikanov D.A., Rautskii M.V., Smolyakov D.A., Tarasov A.S. Facile Synthesis and Selected Characteristics of Two-Dimensional Material Composed of Iron Sulfide and Magnesium-Based Hydroxide Layers (Tochilinite) // New J. Chem. 2023. V. 47. P. 11869–11881. https://doi.org/10.1039/D3NJ00758H
  35. 35. Likhatski M.N., Borisov R.V., Fetisova O.Yu., Ivaneeva A.D., Karpov D.V., Tomashevich Ye.V., Karacharov A.A., Vorobyev S.A., Mazurova E.V., Mikhlin Yu.L. Specificity of Thermal Stability and Reactivity of Two-Dimensional Layered Cu-Fe Sulfide – Mg-Based Hydroxide Compounds (Valleriites) // ACS Omega. 2023. V. 8. № 39. P. 36109–36117. https://doi.org/10.1021/acsomega.3c04274
  36. 36. Карачаров А.А., Лихацкий М.Н., Борисов Р.В., Томашевич Е.В., Воробьёв, С.А. Жарков С.М. Модификация поверхности синтетического валлериита наночастицами золота: роль специфической адсорбции и дзета-потенциала // Коллоидный журн. 2024. Т. 86. № 1. С. 40–51.
  37. 37. Karacharov A.A., Borisov R.V., Mikhlin Y.L., Likhatski M.N., Teremova M.I., Gurevich Y.L. The Study of Bacterial Leaching of Synthetic Valleriite-Containing Materials // J. Sib. Fed. Univ. Chem. 2023. V. 16. P. 300–311
  38. 38. McCollom T.M., Hoehler T., Fike D.A., Houghton J.L., Bell A., Klein F., Moskowitz B., Solheid P. Formation of Mixed-Layer Sulfide-Hydroxide Minerals from the Tochilinite-Valleriite Group During Experimental Serpentinization of Olivine // Am. Mineral. 2024. V. 109. № 1. P. 61–72. https://doi.org/10.2138/am-2022-8625
  39. 39. Bolney R., Grosch M., Winkler M., van Slageren J., Weigand W., Robl C. Facile Synthesis and Characterization of Pure Tochilinite-like Materials from Nanoparticulate FeS // Z. Für Anorg. Allg. Chem. 2022. V. 648. Р.e202200219. https://doi.org/10.1002/zaac.202200219
  40. 40. Zhou X., Wang L., Fan X., Wilfong B., Liou S.C., Wang Y., Zheng H., Feng Z., Wang C., Rodriguez E.E. Isotope Effect Between H2O and D2O in Hydrothermal Synthesis // Chem. Mater. 2020. V. 32. P. 769–775. https://doi.org/10.1021/acs.chemmater.9b04121
  41. 41. Meng X., Jing X., Cheng J., Tang H., Chen X., Zhou X., Li L. Facile Phase Control of Solution-Processed Copper Iron Sulfide Nanocrystals for a Low-Cost Self-Powered NIR Photodetector with Fast Response // ACS App. Nano Mater. 2024. V. 7. № 7. P. 8175–8185. https://doi.org/10.1021/acsanm.4c00709
  42. 42. Борисов Р.В., Белоусов О.В., Лихацкий М.Н., Жижаев А.М., Кирик С.Д. Гидротермальный синтез наноразмерных частиц Ir и Ir-Pd на углеродных нанотрубках // Изв. Академии наук. Сер. хим. 2022. Т. 71. № 6. С. 1164–1172.
  43. 43. Борисов Р.В., Белоусов О.В., Жижаев А.М., Кирик С.Д., Михлин Ю.Л. Характеристики наночастиц металлического иридия, синтезированных в гидротермальных условиях // Неорган. материалы. 2022. Т. 58. № 2. С.225–232. https://doi.org/10.31857/S0002337X22020038
  44. 44. Zhang J., Li T., Li B., Zhang S., Dou Y., Yuan Q., Wu Yu., Han J. Erdite NaFeS2 as a New Anode Material for Lithium-Ion Batteries // ACS Sustain. Chem. Eng. 2022. V. 10. № 32. P.10666–10674. https://doi.org/10.1021/acssuschemeng.2c02806
  45. 45. Balaji K.R., Hardian R., Kumar V.D., Viswanatha R., Kumar S., Kumar S., Singh A., Santosh M.S., Szekely G. Composite Nanofiltration Membrane Comprising One-Dimensional Erdite, Two-Dimensional Reduced Graphene Oxide, and Silkworm Pupae Binder // Mater. Today Chem. 2021. V. 22. P. 100602. https://doi.org/10.1016/j.mtchem.2021.100602.
  46. 46. Mascolo G., Marino O. A New Synthesis and Characterization of Magnesium-Aluminium Hydroxides // Mineral Mag. 1980. V. 43. P. 619–621. https://doi.org/10.1180/minmag.1980.043.329.09
  47. 47. Агафонов А.В., Шибаева В.Д., Краев А.С., Сироткин Н.А., Титов В.А., Хлюстова А.В. Влияние метода синтеза слоистых двойных гидроксидов Ni–Al на их диэлектрические свойства // Журн. неорган. химии. 2023. Т. 68. № 1. С. 4–9. https://doi.org/10.31857/S0044457X22600967
  48. 48. Агафонов А.В., Сироткин Н.А., Титов В.А., Хлюстова А.В. Плазменно-растворный синтез слоистых двойных гидроксидов Zn-Al // Неорган. материалы. 2022. Т. 58. № 11. С. 1177–1183. https://doi.org/10.31857/S0002337X2211001X
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library