RAS Chemistry & Material ScienceНеорганические материалы Inorganic Materials

  • ISSN (Print) 0002-337X
  • ISSN (Online) 3034-5588

Термодинамическое моделирование влияния примесей и добавок NaCl НА химический состав продуктов синтеза карбида кремния методом ачесона

PII
10.31857/S0002337X24030069-1
DOI
10.31857/S0002337X24030069
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 60 / Issue number 3
Pages
309-315
Abstract
Неорганические материалы, Термодинамическое моделирование влияния примесей и добавок NaCl НА химический состав продуктов синтеза карбида кремния методом ачесона
Keywords
Date of publication
14.09.2025
Year of publication
2025
Number of purchasers
0
Views
2

References

  1. 1. Гаршин А.П. Новые конструкционные материалы на основе карбида кремния. М.: Юрайт, 2021. 182 с.
  2. 2. Sevastyanov V.G., Ezhov Yu.S., Simonenko E.P., Kuznetsov N.T. Thermodynamic Analysis of the Production of Silicon Carbide via Silicon Dioxide and Carbon // Mater. Sci. Forum. Trans Tech. Publ. Ltd. 2004. V. 457. P. 59–62.
  3. 3. Павелко Р.Г., Севастьянов В.Г., Ежов Ю.С., Кузнецов Н.Т. Термодинамическое обоснование и экспериментальное исследование транспорта карбида кремния при карботермическом восстановлении SiO2 // Неорган. материалы. 2007. Т. 43. № 7. С. 792–796.
  4. 4. Полях О.А., Ноздрин И.В., Строкина И.В., Якушевич Н.Ф., Хорощенко А.А., Комрони М. Физико-химические основы карботермического восстановления оксида кремния в печи сопротивления // Металлургия: технологии, инновации, качество. Тр. XXIII Междунар. науч.-практ. Конф. / Под общ. ред. Юрьева А.Б. Новокузнецк: Сибирский государственный индустриальный университет, 2022. С. 180–186.
  5. 5. Xia Z., Gao J., Zhang T., Wang K., Chen F., Xu G., Zhong Z., Su F. Thermodynamic Analysis of the Key Reactions in Synthesizing Inorganic Silicon Compounds or Products // Ind. Eng. Chem. Res. 2023. V. 62. № 33. P. 13213–13222. https://doi.org/10.1021/acs.iecr.3c01802
  6. 6. Lin Y.-J., Tsang C.P. The Effects of Starting Precursors on the Carbothermal Synthesis of SiC Powders // Ceram. Int. 2003. V. 29. № 1. P. 69–75. https://doi.org/10.1016/S0272-8842 (02)00091-3
  7. 7. Gupta G.S., Raj P., Tiwari K. An Analysis of Heat Distribution in the Production of SiC Process // Procedia Manufacturing. 2019. V. 30. P. 64–70. https://doi.org/10.1016/j.promfg.2019.02.010
  8. 8. Gupta G.S., Raj P. Temperature Measurements in a Laboratory Scale Furnace for Manufacturing of Silicon Carbide Through Acheson Process // Measurement. 2020. V. 151. P. 107131. https://doi.org/10.1016/j.measurement.2019.107131
  9. 9. Raj P., Gupta G.S., Rudolph V. Silicon Carbide Formation by Carbothermal Reduction in the Acheson Process: A Hot Model Study // Thermochim. Acta. 2020. V. 687. P. 178577. https://doi.org/10.1016/j.tca.2020.178577
  10. 10. Находнова А.В., Самойлов В.М., Фатеева М.А., Гончарова Н.Н. Применение рамановской спектроскопии для контроля температурных полей керна печи Ачесона // Спектроскопия комбинационного рассеяния света: 7-й Урало-Сибирский семинар. Екатеринбург: Институт геологии и геохимии им. академика А.Н. Заварицкого, 2021. С. 118–120.
  11. 11. Крашенникова Н.С., Фролова И.В. Использование кварцевого песка Туганского месторождения в технологии тарного стекла // Изв. Томского политехн. ун-та. 2004. Т. 307. № 4. С. 113–116.
  12. 12. Feng D., Qin Z., Ren Q., Sun S., Xia Q., Ru H., Wang W., Ren S., Zhang C. Occurrence Forms of Major Impurity Elements in Silicon Carbide // Ceram. Int. 2022. V. 48. № 1. P. 205-211. https://doi.org/10.1016/j.ceramint.2021.09.095
  13. 13. Каменцев М.В. Искусственные абразивные материалы. М.: Машгиз, 1950. 176 с.
  14. 14. Carbide, Nitride, and Boride Materials Synthesis and Processing / Ed. Weimer A.W. L., N. Y.: Chapman & Hall, 1997. 671 p.
  15. 15. Matizamhuka W.R. Gas Transport Mechanisms and the Behaviour of Impurities in the Acheson Furnace for the Production of Silicon Carbide // Heliyon. 2019. V. 5. № 4. P. e01535. https://doi.org/10.1016/j.heliyon.2019.e01535
  16. 16. Zhou L.Y., Telle R., Purifying Mechanism in the Acheson Process - a Thermodynamic Study // Mater. Sci. Forum. 2010. V. 645. P. 41–44. https://doi.org/10.4028/www.scientific.net/MSF.645-648.41
  17. 17. Wang Z., Jiang M., Ning P., Xie G., Thermodynamic Modeling and Gaseous Pollution Prediction of the Yellow Phosphorus Production // Ind. Eng. Chem. Res. 2011. V. 50. № 21. P. 12194–12202. https://doi.org/10.1021/ie200419a
  18. 18. Zhang Y., Ji Y., Qian H. Progress in Thermodynamic Simulation and System Optimization of Pyrolysis and Gasification of Biomass // Green Chem. Eng. 2021. V. 2. № 3. P. 266–283. https://doi.org/10.1016/j.gce.2021.06.003
  19. 19. Салина В.А., Жучков В.И., Сычев А.В. Термодинамическое моделирование карботермического процесса восстановления хрома из оксидной системы Cr2O3–FeO–CaO–SiO2–MgO–Al2O3 // Расплавы. 2020. № 6. С. 608–615. https://doi.org/10.31857/S0235010620060110
  20. 20. Koukkari P., Pajarre R. A Gibbs Energy Minimization Method for Constrained and Partial Equilibria // Pure Appl. Chem. 2011. V. 83. № 6. P. 1243–1254. https://doi.org/10.1351/PAC-CON-10-09-36
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library