RAS Chemistry & Material ScienceНеорганические материалы Inorganic Materials

  • ISSN (Print) 0002-337X
  • ISSN (Online) 3034-5588

Структура РФЭС магнетита

PII
10.31857/S0002337X24020073-1
DOI
10.31857/S0002337X24020073
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 60 / Issue number 2
Pages
193-204
Abstract
Неорганические материалы, Структура РФЭС магнетита
Keywords
Date of publication
14.09.2025
Year of publication
2025
Number of purchasers
0
Views
4

References

  1. 1. McBeth J.M., Lloyd J.R., Law G.T.W., Livens F.R., Burke I.T., Morris K. Redox Interactions of Technetium with Iron-Bearing Minerals // Miner. Mag. 2011. V. 75. № 4. P. 2419–2430. https://doi.org/10.1180/minmag.2011.075.4.2419
  2. 2. Duff M.C., Coughlin J.U., Hunter D.B. Uranium Co-precipitation with Iron Oxide Minerals // Geochim. Cosmochim. Acta. 2002. V. 66. № 20. P. 3533–3547. https://doi.org/10.1016/S0016- 7037(02)00953-5
  3. 3. Das D., Sureshkumar M., Koley S., Mithal N., Pillai C. Sorption of Uranium on Magnetite Nanoparticles // J. Radioanal. Nucl. Chem. 2010. V. 285. № 3. P. 447–454. https://doi. org/10.1007/s10967-010-0627-0
  4. 4. Lukens W.W., Saslow S.A. Facile Incorporation of Technetium into Magnetite, Magnesioferrite, and Hematite by Formation of Ferrous Nitrate in situ: Precursors to Iron Oxide Nuclear Waste Forms // Dalton Trans. 2018. V. 47. № 30. P. 10229–10239. https://doi.org/10.1039/c8dt01356j
  5. 5. Smith F.N., Um W., Taylor C.D., Kim D.S., Schweiger M.J., Kruger A.A. Computational Investigation of Technetium (IV) Incorporation into Inverse Spinels: Magnetite (Fe3O4) and Trevorite (NiFe2O4) // Environ. Sci. Technol. 2016. V. 50. № 10. P. 5216–5224. https://doi. org/10.1021/acs.est.6b00200
  6. 6. Сафонов А.В., Андрющенко Н.Д., Иванов П.В., Болдырев К.А., Бабич Т.Л., Герман К.Э., За- харова Е.В. Биогенные факторы иммобили- зации радионуклидов на песчаных породах верхних водоносных горизонтов // Радио- химия. 2019. Т. 61. № 1. С. 63–71. https://doi. org/10.1134/S0033831119010106
  7. 7. Boguslavsky A.E., Gaskova O.L., Naymushina O.S., Popova N.M., Safonov A.V. Environmental Monitoring of Low-Level Radioactive Waste Disposal in Electrochemical Plant Facilities in Zelenogorsk, Russia // Appl. Geochem. 2020. V. 119. Р. 104598. https://doi.org/10.1016/j. apgeochem.2020.104598
  8. 8. Safonov A.V., Boguslavsky A.E., Gaskova O.L., Boldyrev K.A., Shvartseva O.S., Khvashchevs- kaya A.A., Popova, N.M. Biogeochemical Mode- lling of Uranium Immobilization and Aquifer Remediation Strategies near NCCP Sludge Storage Facilities // Appl. Sci. 2021. V. 11. № 6. Р. 2875. https://doi.org/10.3390/app11062875
  9. 9. Mills P., Sullivan J.L. A Study of the Core Level Electrons in Iron and Its Three Oxides by Means of X-Ray Photoelectron Spectroscopy // J. Phys. D: Appl. Phys. 1983. V. 16. P. 723–732. https:// doi.org/10.1088/0022-3727/16/5/005
  10. 10. Zimmermann R., Steiner P., Claessen R., Reinert F., Hufner S., Blaha P., Dufek P. Electronic Structure of 3d-Transition-Metal Oxides: on-site Coulomb Repulsion Versus Covalency // J. Phys.: Condens. Matter. 1999. V. 11. P. 1657–1682. https://doi.org/10.1088/0953-8984/11/7/002
  11. 11. Miedemaa P.S., Borgatti F., Offi F., Panaccione G., de Groota F.M.F. Iron 1s X-Ray Photoemission of Fe2O3 // J. Electron. Spectrosc. Relat. Phenom. 2015. V. 203. P. 8–13. https://doi.org/10.1016/j. elspec.2015.05.003
  12. 12. Bagus P.S., Nelin C.J., Brundle C.R., Crist B.V., Lahiri N., Rosso K.M. Combined Multiplet Theory and Experiment for the Fe 2p and 3p XPS of FeO and Fe2O3 // J. Chem. Phys. 2021. V. 154.
  13. 13. Р. 094709. https://doi.org/10.1063/5.0039765.13. Тетерин Ю.А., Перфильев Ю.Д., Маслаков К.И., Яржемский В.Г., Тетерин А.Ю., Ива- нов К.Е., Дедушенко С.К. Структура спектров РФЭС K2FeO4 // ЖСХ. 2022. Т. 63. № 10. Р. 99693. https://doi.org/10.29902/JSC_id99693
  14. 14. Van der Heide H., Hemmel R., Van Bruggen C.F., Haas C. X-Ray Photoelectron Spectra of 3d Transition Metal Pyrites // J. Solid State Chem. 1980. V. 33. P. 17–25. https://doi. org/10.1016/0022-4596(80)90543-5
  15. 15. Wendin G. Breakdown of One-Electron Pictures in Photoelectron Spectra // Struct. Bond. 1981. V. 45. P. 1–125. https://doi.org/10.1007/ BFb0111504
  16. 16. Яржемский В.Г., Тетерин Ю.А., Пресняков И.А., Маслаков К.И., Тетерин А.Ю., Ива- нов К.Е. Многоэлектронные эффекты в Co3s рентгеновских фотоэлектронных спектрах диамагнитного ScCoO3 и парамагнитно- го BiCoO3 кобальтитов // Письма в ЖЭТФ. 2020. Т. 111. № 8. С. 487–493. https://doi. org/10.31857/S1234567820080030
  17. 17. Pavlov S.S., Dmitriev A.Y., Frontasyeva M.V. Automation System for Neutron Activation Analysis at the Reactor IBR-2, Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Russia // J. Radioanal. Nucl. Chem. 2016. V. 309. P. 27–38. https://doi. org/10.1007/s10967-016-4864-8
  18. 18. Shirley D.A. High-Resolution X-Ray Photo- emission Spectrum of the Valence Bands of Gold // Phys. Rev. B. 1972. V. 5. P. 4709–4714. https://doi.org/10.1103/PhysRevB.5.4709
  19. 19. Панов А.П. Пакет программ обработки спек- тров SPRO и язык программирования SL: Препринт. М.: Ин-т атом. энергии, ИАЭ- 6019/15, 1997. 31 с.
  20. 20. Sosulnikov M.I., Teterin Yu.A. X-Ray Photoelectron Studies of Ca, Sr and Ba and Their Oxides and Carbonates // J. Electron. Spectrosc. Relat. Phenom. 1992. V. 59. P. 111–126. https:// doi.org/10.1016/0368-2048(92)85002-O
  21. 21. Нефедов В.И. Рентгеноэлектронная спектро- скопия химических соединений (справоч- ник). М.: Химия, 1984. 256 с.
  22. 22. Grosvenor A.P., Kobe B.A., Biesinger M.C., McIntyre N.S. Investigation of Multiplet Splitting of Fe 2p XPS Spectra and Bonding in Iron Compounds // Surf. Interface Anal. 2004. V. 36. P. 1564–1574. https://doi.org/10.1002/sia.1984
  23. 23. Descostes M., Mercier F., Thromat N., Beaucaire C., Gautier-Soyer M. Use of XPS in the Determination of Chemical Environment and Oxidation State of Iron and Sulfur Samples: Constitution of a Data Basis in Binding Energies for Fe and S Reference Compounds and Applications to the Evidence of Surface Species of an Oxidized Pyrite in a Carbonate Medium // Appl. Surf. Sci. 2000. V. 165. P. 288–302. https:// doi.org/10.1016/S0169-4332(00)00443-8
  24. 24. Van Vleck J.H. The Dirac Vector Model in Complex Spectra // Phys. Rev. 1934. V. 45. № 5. P. 405–419. https://doi.org/10.1103/ PhysRev.45.405
  25. 25. Yarzhemsky V.G., Teterin Yu.A. Satellite Excitations and Final State Interactions in Atomic Photoionization // Atoms. 2022. V. 10. № 3. P. 73 (13 p). https://doi.org/10.3390/atoms10030073
  26. 26. Huang K.N., Aojogi M., Chen M.N., Graseman B., Mark H. Neutral-atom Electron Binding Energies from Relaxed-Orbital Relativistic Hartree-Fock- Slater Calculations 2 ≤ Z ≤ 106 // Atom. Data Nucl. Data Tables. 1976. V. 18. P. 243–291. https://doi.org/10.1016/0092-640X (76)90027-9
  27. 27. Band I.M., Kharitonov Yu.I., Trzhaskovskaya M.B. Photoionization cross Sections and Photoelectron Angular Distributions for x-Ray Line Energies in the Range 0.132–4.509 keV Targets: 1 ≤ Z ≤ 100 // Atom Data Nucl. Data Tables. 1979. V. 23. P. 443–505. https://doi. org/10.1016/0092-640X(79)90027-5
  28. 28. Kochur A.G., Ivanova T.M., Shchukarev A.V., Linko R.V., Sidorov A.A., Kiskin M.A., Novotortsev V.M., Eremenko I.L. X-Ray Photoelectron Fe3s and Fe3p Spectra of Polynuclear Trimethylacetate Iron Complexes // J. Electron. Spectrosc. Relat. Phenom. 2010. V. 180. № 1–3. P. 21–26. https://doi.org/10.1016/j.elspec.2010.03.011
  29. 29. Водяницкий Ю.Н. Природные и техногенные соединения тяжелых металлов в почвах // Почвоведение. 2014. Т. 4. С.420–432. https:// doi.org/10.7868/S0032180X14040108
  30. 30. Sasaki S. Radial Distribution of Electron Density in Magnetite, Fe3O4 // Acta Crystallogr. Sect. B. 1997. V. B53. P. 762–766. https://doi. org/10.1107/S0108768197007842
  31. 31. Jahanbagloo J.C., Zoltai T. The Crystal Structure of a Hexagonal Al-Serpentine // Am. Mineral. 1968. V. 53. P. 14–24.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library