RAS Chemistry & Material ScienceНеорганические материалы Inorganic Materials

  • ISSN (Print) 0002-337X
  • ISSN (Online) 3034-5588

Corrosion Resistance of GdTbDyHoSc and GdTbDyHoY High-Entropy Rare-Earth Alloys with Protective Coatings

PII
10.31857/S0002337X23070059-1
DOI
10.31857/S0002337X23070059
Publication type
Status
Published
Authors
Volume/ Edition
Volume 59 / Issue number 7
Pages
750-758
Abstract
We have studied for the first time the feasibility of using Al2O3 and Al : Zn (1 : 1) coatings produced by supersonic plasma spraying for protecting GdTbDyHoSc and GdTbDyHoY high-entropy rare-earth (RE) alloys from corrosion in a salt-fog chamber. The results demonstrate that, under salt fog conditions, Al2O3 coatings break down through local surface activation, resulting in pitting corrosion, with a considerable fraction of the coating on the main material remaining intact. The alloys coated with Al : Zn (1 : 1) exhibit lower corrosion resistance under salt fog conditions as a consequence of electrochemical corrosion. Interaction of Al2O3 with NaCl limits the suitability of such coatings for protecting high-entropy RE alloys under salt fog conditions. Limitations refer to the specimen test time and coating thickness.
Keywords
высокоэнтропийные сплавы редкоземельные металлы камера соляного тумана защитные покрытия сверхзвуковое плазменное напыление
Date of publication
01.07.2023
Year of publication
2023
Number of purchasers
0
Views
22

References

  1. 1. Гельчинский Б.Р., Балякин И.А., Юрьев А.А., Ремпель А.А. Высокоэнтропийные сплавы: исследование свойств и перспективы применения в качестве защитных покрытий // Успехи химии. 2022. Т. 91. С. RCR5023.  https://doi.org/10.1070/RCR5023
  2. 2. Рогачев А.С. Структура, стабильность и свойства высокоэнтропийных сплавов // Физ. мет. металловед. 2020. Т. 121. № 8. С. 807–841.  https://doi.org/10.31857/S0015323020080094
  3. 3. Gelchinski B.R., Balyakin I.A., Ilinykh N.I., Rempel A.A. Analysis of the Probability of Synthesizing High-Entropy Alloys in the Systems Ti–Zr–Hf–V–Nb, Gd–Ti–Zr–Nb–Al, and Zr–Hf–V–Nb–Ni // Phys. Mesomech. 2021. V. 24. № 6. P. 701–706. https://doi.org/10.1134/S1029959921060084
  4. 4. Chen T.K., Shun T.T., Yeh J.-W., Wong M.S. Nanostructured Nitride Films of Multi-Element High-Entropy Alloys by Reactive DC Sputtering // Surf. Coat. Technol. 2004. V. 188–189. P. 193–200. https://doi.org/10.1016/j.surfcoat.2004.08.023
  5. 5. Zhang Y., Zuo T.T., Tang Z., Gao M.C., Dahmen K.A., Liaw P.K., Lu Z.P. Microstructures and Properties of High-Entropy Alloys // Prog. Mater. Sci. 2014. V. 61. P. 1–93. https://doi.org/10.1016/j.pmatsci.2013.10.001
  6. 6. Takeuchi K., Amiya T., Wada K., Yubuta W., Zhang W. High-Entropy Alloys with a Hexagonal Close-Packed Structure Designed by Equi-Atomic Alloy Strategy and Binary Phase Diagrams // JOM. 2014. V. 66. P. 1984–1992. https://doi.org/10.1007/s11837-014-1085-x
  7. 7. Chang C.-H., Titus M.S., Yeh J.-W. Oxidation Behavior between 700 and 1300°C of Refractory TiZrNbHfTa High-Entropy Alloys Containing Aluminum. // Adv. Eng. Mater. 2018. V. 20. P. 1700948. https://doi.org/10.1002/adem.201700948
  8. 8. Батаева З.Б., Руктуев А.А., Иванов И.В., Юргин А.Б., Батаев И.А. Обзор исследований сплавов, разработанных на основе энтропийного подхода // Обработка металлов (технология, оборудование, инструменты). 2021. Т. 23. № 2. С. 116–146. https://doi.org/10.17212/1994-6309-2021-23.2-116-146
  9. 9. Рыльцев Р.Е., Эстемирова С.Х., Ягодин Д.А., Стерхов Е.В., Упоров С.А. Структура, термическая стабильность и транспортные свойства жаропрочного высокоэнтропийного сплава ZrTiIHfNb // ФТТ. 2021. Т. 63. № 12. С. 1974–1977.
  10. 10. Упоров С.А., Эстемирова С.Х., Стерхов Е.В., Зайцева П.В., Скрыльник М.Ю., Шуняев К.Ю., Ремпель А.А. Особенности кристаллизации, структуры и термической стабильности высокоэнтропийных сплавов GdTbDyHoSc и GdTbDyHoY // Расплавы. 2022. № 5. С. 443–453. https://doi.org/10.31857/S0235010622050097
  11. 11. Gates-Rector S., Blanton T. The Powder Diffraction File: A Quality Materials Characterization Database // Powder Diffr. 2019. V. 34. № 4. P. 352–360. https://doi.org/10.1017/S0885715619000812
  12. 12. Rietveld H.M. A Profile Refinement Method for Nuclear and Magnetic Structures // J. Appl. Crystallogr. 1969. № 2. P. 65–71. https://doi.org/10.1107/S0021889869006558
  13. 13. Ilinykh S.A., Sarsadskih K.I., Chusov S.A., Korolev O.A., Achmetshin S.M., Krashaninin V.A. The Study of Powder Coatings Based on Al and Ni, Obtained by Supersonic Plasma Spraying // J. Phys. Conf. Ser. 2019. V. 1281. P. 012027. https://doi.org/10.1088/1742-6596/1281/1/012027
  14. 14. Ильиных С.А., Криворогова А.С., Ильиных Н.И., Долматов А.В., Гельчинский Б.Р., Леонтьев Л.И. Упрочнение деталей машин и механизмов, изготовленных из алюминиевых сплавов, методом сверхзвукового плазменного напыления // Новые материалы и технологии: порошковая металлургия, композиционные материалы, защитные покрытия, сварка. Материалы 14-й Международной научно-технической конференции, посвященной 60-летию порошковой металлургии Беларуси. Минск, 2020. С. 473–479.
  15. 15. Ilinykh S.A., Krashaninin V.A., Ilinykh N.I., Leontiev L.I. Modification of the Surface of Structural Materials by Concentrated Energy Flows in order to Improve their Performance Properties // Key Eng. Mater. 2022. V. 910. P. 507–513. https://www.scientific.net/KEM.910.507
  16. 16. Spedding F.H., Sanden B., Beaudry B.J. The Er–Y, Tb–Ho, Tb–Er, Dy–Ho, Dy–Er and Ho–Er Phase Systems // J. Less-Common Met. 1973. V. 31. P. l–13.
  17. 17. Осипов К.А., Галкин Б.Д., Уразалиев У.С. Электронографическое исследование структуры пленок системы окись алюминия–вольфрам // Изв. АН СССР. Неорган. материалы. 1973. Т. 9. № 10. С. 1738–1740.
  18. 18. Гемпел К.А. Справочник по редким металлам; пер. с англ. М.: Мир, 1965. 946 с.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library