- PII
- 10.31857/S0002337X23070059-1
- DOI
- 10.31857/S0002337X23070059
- Publication type
- Status
- Published
- Authors
- Volume/ Edition
- Volume 59 / Issue number 7
- Pages
- 750-758
- Abstract
- We have studied for the first time the feasibility of using Al2O3 and Al : Zn (1 : 1) coatings produced by supersonic plasma spraying for protecting GdTbDyHoSc and GdTbDyHoY high-entropy rare-earth (RE) alloys from corrosion in a salt-fog chamber. The results demonstrate that, under salt fog conditions, Al2O3 coatings break down through local surface activation, resulting in pitting corrosion, with a considerable fraction of the coating on the main material remaining intact. The alloys coated with Al : Zn (1 : 1) exhibit lower corrosion resistance under salt fog conditions as a consequence of electrochemical corrosion. Interaction of Al2O3 with NaCl limits the suitability of such coatings for protecting high-entropy RE alloys under salt fog conditions. Limitations refer to the specimen test time and coating thickness.
- Keywords
- высокоэнтропийные сплавы редкоземельные металлы камера соляного тумана защитные покрытия сверхзвуковое плазменное напыление
- Date of publication
- 01.07.2023
- Year of publication
- 2023
- Number of purchasers
- 0
- Views
- 22
References
- 1. Гельчинский Б.Р., Балякин И.А., Юрьев А.А., Ремпель А.А. Высокоэнтропийные сплавы: исследование свойств и перспективы применения в качестве защитных покрытий // Успехи химии. 2022. Т. 91. С. RCR5023. https://doi.org/10.1070/RCR5023
- 2. Рогачев А.С. Структура, стабильность и свойства высокоэнтропийных сплавов // Физ. мет. металловед. 2020. Т. 121. № 8. С. 807–841. https://doi.org/10.31857/S0015323020080094
- 3. Gelchinski B.R., Balyakin I.A., Ilinykh N.I., Rempel A.A. Analysis of the Probability of Synthesizing High-Entropy Alloys in the Systems Ti–Zr–Hf–V–Nb, Gd–Ti–Zr–Nb–Al, and Zr–Hf–V–Nb–Ni // Phys. Mesomech. 2021. V. 24. № 6. P. 701–706. https://doi.org/10.1134/S1029959921060084
- 4. Chen T.K., Shun T.T., Yeh J.-W., Wong M.S. Nanostructured Nitride Films of Multi-Element High-Entropy Alloys by Reactive DC Sputtering // Surf. Coat. Technol. 2004. V. 188–189. P. 193–200. https://doi.org/10.1016/j.surfcoat.2004.08.023
- 5. Zhang Y., Zuo T.T., Tang Z., Gao M.C., Dahmen K.A., Liaw P.K., Lu Z.P. Microstructures and Properties of High-Entropy Alloys // Prog. Mater. Sci. 2014. V. 61. P. 1–93. https://doi.org/10.1016/j.pmatsci.2013.10.001
- 6. Takeuchi K., Amiya T., Wada K., Yubuta W., Zhang W. High-Entropy Alloys with a Hexagonal Close-Packed Structure Designed by Equi-Atomic Alloy Strategy and Binary Phase Diagrams // JOM. 2014. V. 66. P. 1984–1992. https://doi.org/10.1007/s11837-014-1085-x
- 7. Chang C.-H., Titus M.S., Yeh J.-W. Oxidation Behavior between 700 and 1300°C of Refractory TiZrNbHfTa High-Entropy Alloys Containing Aluminum. // Adv. Eng. Mater. 2018. V. 20. P. 1700948. https://doi.org/10.1002/adem.201700948
- 8. Батаева З.Б., Руктуев А.А., Иванов И.В., Юргин А.Б., Батаев И.А. Обзор исследований сплавов, разработанных на основе энтропийного подхода // Обработка металлов (технология, оборудование, инструменты). 2021. Т. 23. № 2. С. 116–146. https://doi.org/10.17212/1994-6309-2021-23.2-116-146
- 9. Рыльцев Р.Е., Эстемирова С.Х., Ягодин Д.А., Стерхов Е.В., Упоров С.А. Структура, термическая стабильность и транспортные свойства жаропрочного высокоэнтропийного сплава ZrTiIHfNb // ФТТ. 2021. Т. 63. № 12. С. 1974–1977.
- 10. Упоров С.А., Эстемирова С.Х., Стерхов Е.В., Зайцева П.В., Скрыльник М.Ю., Шуняев К.Ю., Ремпель А.А. Особенности кристаллизации, структуры и термической стабильности высокоэнтропийных сплавов GdTbDyHoSc и GdTbDyHoY // Расплавы. 2022. № 5. С. 443–453. https://doi.org/10.31857/S0235010622050097
- 11. Gates-Rector S., Blanton T. The Powder Diffraction File: A Quality Materials Characterization Database // Powder Diffr. 2019. V. 34. № 4. P. 352–360. https://doi.org/10.1017/S0885715619000812
- 12. Rietveld H.M. A Profile Refinement Method for Nuclear and Magnetic Structures // J. Appl. Crystallogr. 1969. № 2. P. 65–71. https://doi.org/10.1107/S0021889869006558
- 13. Ilinykh S.A., Sarsadskih K.I., Chusov S.A., Korolev O.A., Achmetshin S.M., Krashaninin V.A. The Study of Powder Coatings Based on Al and Ni, Obtained by Supersonic Plasma Spraying // J. Phys. Conf. Ser. 2019. V. 1281. P. 012027. https://doi.org/10.1088/1742-6596/1281/1/012027
- 14. Ильиных С.А., Криворогова А.С., Ильиных Н.И., Долматов А.В., Гельчинский Б.Р., Леонтьев Л.И. Упрочнение деталей машин и механизмов, изготовленных из алюминиевых сплавов, методом сверхзвукового плазменного напыления // Новые материалы и технологии: порошковая металлургия, композиционные материалы, защитные покрытия, сварка. Материалы 14-й Международной научно-технической конференции, посвященной 60-летию порошковой металлургии Беларуси. Минск, 2020. С. 473–479.
- 15. Ilinykh S.A., Krashaninin V.A., Ilinykh N.I., Leontiev L.I. Modification of the Surface of Structural Materials by Concentrated Energy Flows in order to Improve their Performance Properties // Key Eng. Mater. 2022. V. 910. P. 507–513. https://www.scientific.net/KEM.910.507
- 16. Spedding F.H., Sanden B., Beaudry B.J. The Er–Y, Tb–Ho, Tb–Er, Dy–Ho, Dy–Er and Ho–Er Phase Systems // J. Less-Common Met. 1973. V. 31. P. l–13.
- 17. Осипов К.А., Галкин Б.Д., Уразалиев У.С. Электронографическое исследование структуры пленок системы окись алюминия–вольфрам // Изв. АН СССР. Неорган. материалы. 1973. Т. 9. № 10. С. 1738–1740.
- 18. Гемпел К.А. Справочник по редким металлам; пер. с англ. М.: Мир, 1965. 946 с.