- PII
- 10.31857/S0002337X23060106-1
- DOI
- 10.31857/S0002337X23060106
- Publication type
- Status
- Published
- Authors
- Volume/ Edition
- Volume 59 / Issue number 6
- Pages
- 646-653
- Abstract
- Using coprecipitation, we have synthesized LnVO4 (simple) and CaLnZr(VO4)3 (Ln = Nd, Sm, Eu, Gd, Dy, Yb) (ternary) lanthanide orthovanadates; a La0.3Nd0.5Sm0.1Eu0.1VO4 solid solution, modeling the composition of the lanthanides in radioactive waste (all crystallizing in the zircon structure, sp. gr. I41/amd); and LaVO4, crystallizing in the monazite structure. Their unit-cell parameters have been shown to increase systematically with increasing lanthanide ionic radius. Their mid- and far-IR vibrational spectra suggest that their symmetry is lower than that of classical zircon. The synthesized compounds are stable up to 900°C. Their average thermal expansion coefficients lie in the range (6–11) × 10–6 K–1.
- Keywords
- лантаноиды ванадаты циркон
- Date of publication
- 14.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 5
References
- 1. Orlova A.I., Ojovan M.I. Ceramic Mineral Waste-Forms for Nuclear Waste Immobilization // Materials. 2019. V. 12. № 16. P. 2638.
- 2. Китаев Д.Б., Волков Ю.Ф., Орлова А.И. Ортофосфаты четырехвалентных Ce, Th, U, Np и Pu со структурой монацита // Радиохимия. 2004. Т. 46. № 3. С. 195–200.
- 3. Ewing R., Lutze W., Weber W. Zircon: A Host-Phase for the Disposal of Weapons Plutonium // J. Mater. Res. 1995. V. 10. № 2. P. 24–246.
- 4. Clavier N., Podor R., Dacheux N. Crystal Chemistry of the Monazite Structure // J. Eur. Ceram. Soc. 2011. V. 31. № 6. P. 941–976.
- 5. Nabar M.A., Mhatre B.G. Studies on Triple Orthovanadates VIII. Synthesis and Spectrostructural Characterization of Triple Orthovanadates BaLnTh(VO4)3 (Ln = La or Pr) and BaLnCe(VO4)3 (Ln = La, Pr, Nd or Sm) // J. Alloys Compd. 2001. V. 323–324. P. 83–85.
- 6. Nabar M.A., Mhatre B.G., Vasaika A.P. Studies on Triple Orthovanadates. Part 3. Crystal Chemistry of the Zircon Analogues of Type MIILnMIV(VO4)3 (MII = Ca or Pb; MIV = Ce or Th; Ln = Lanthanide element) // J. Appl. Crystallogr. 1981. V. 323–324. № 5. P. 469–470.
- 7. Nabar M.A., Mhatre B.G. Studies on Triple Orthovanadates. IV. Crystal Chemistry of the Solid Solutions Ca1–xBaxLaTh(VO4)3 // Inorg. Chim. Acta. 1987. V. 140. P. 165–166.
- 8. Chakoumakos B.C., Abraham M.M., Boatner L.A Crystal Structure Refinements of Zircon-Type MVO4 (M = Sc, Y, Ce, Pr, Nd, Tb, Ho, Er, Tm, Yb, Lu) // J. Solid. State Chem. 1994. V. 109. P. 197–202.
- 9. DIFFRAC.EVA. Release 2011. Copyright Bruker AXS 2010, 2011. Version 2.0. www.bruker-axs.com.
- 10. Shannon R.D. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides // Acta Crystallogr., Sect. A. 1976. V. 32. № 5. P. 751–767.
- 11. Zhou D., Li J., Pang L.-X., Chen G.-H., Qi Z.-M., Wang D.-W., Reaney I.M. Crystal Structure, Infrared Spectra, and Microwave Dielectric Properties of Temperature-Stable Zircon-Type (Y,Bi)VO4 Solid-Solution Ceramics // ACS Omega, 2016. V. 1. P. 963–970.
- 12. Elliott R. J., Harley R. T., Hayes W., Smith, S. R. P. Raman Scattering and Theoretical Studies of Jahn-Teller Induced Phase Transitions in Some Rare-Earth Compounds // Proc. Soc. A: Math. Phys. Eng. Sci. 1972. V. 328. P. 217–266.
- 13. Vali R. Ab initio Vibrational and Dielectric Properties of YVO4 // Solid. State Commun. 2009. V. 149. P. 1637–1640.
- 14. Borovikova E.Yu., Kurazhkovskaya V.S., Boldyrev K.N., Sukhanov M.V., Pet’kov V.I., Kokarev S.A. Vibrational Spectra and Factor-Group Analysis of Double Arsenates of Zirconium and Alkali Metal MZr2(AsO4)3 (M = Li–Cs) // Vibr. Spectrosc. 2014. V. 73. P. 158–163.
- 15. Sun L., Zhao X., Li Y., Li P., Sun H., Cheng X., Fan W. First-Principles Studies of Electronic, Optical, and Vibrational Properties of LaVO4 Polymorph // J. Appl. Phys. 2010. V. 108. P. 093519.