RAS Chemistry & Material ScienceНеорганические материалы Inorganic Materials

  • ISSN (Print) 0002-337X
  • ISSN (Online) 3034-5588

Effect of Isomorphous Substitutions in Calcium Triphosphate, Ca3(PO4)2, on the Microstructural and Chemical Properties of Phosphate Cements Prepared from It

PII
10.31857/S0002337X23040073-1
DOI
10.31857/S0002337X23040073
Publication type
Status
Published
Authors
Volume/ Edition
Volume 59 / Issue number 4
Pages
399-407
Abstract
This paper reports on the preparation and properties of phosphate materials for medical applications: brushite (CaHPO4·2H2O) or monetite (CaHPO4) based cements prepared from β- and α-Ca3(PO4)2 (TCP) via isomorphous substitutions of Na+ or K+ for Ca2+ and of SiO4-4 or SO42- for . The mixing liquid used to prepare phosphate cements from substituted TCP was orthophosphoric acid or H2O, and TCP was mixed with dry Ca(H2PO4)2·H2O. Isomorphous substitutions of Na+ and K+ for Ca2+ ions and PO43- and PO42- for SiO44-, SO42 were confirmed by scanning electron microscopy, X-ray microanalysis, and X-ray diffraction. It has been shown that, as a result of hardening of cement pastes with the use of different mixing liquids, one can obtain materials differing in microstructure, in which brushite or monetite prevails, depending on the TCP phase used in the preparation of the cement. In addition, we have studied interaction of the cements with water for a long time (16 days). The pH of the aqueous medium has been shown to vary from 5 to 7.5. This pH range is favorable for medical applications of the phosphate materials studied.
Keywords
фосфатные материалы брушитный цемент трикальцийфосфат катионное и анионное замещение
Date of publication
14.09.2025
Year of publication
2025
Number of purchasers
0
Views
2

References

  1. 1. Gao C., Peng S., Feng P., Shuai C. Bone Biomaterials and Interactions with Stem Cells // Bone Res. 2017. V. 5. P. 17059. https://doi.org/10.1038/boneres.2017.59
  2. 2. Putlyaev V.I., Safronova T.V. Chemical Transformations of Calcium Phosphates during Production of Ceramic Materials on Their Basis // Inorg. Mater. 2019. V. 55. № 13. P. 1328–1341. https://doi.org/10.1134/S0020168519130028
  3. 3. Hench L.L. Bioceramics // J. Am. Ceram. Soc. 1998. V. 81. № 7. P. 1705–1728. https://doi.org/10.1111/j.1151-2916.1998.tb02540.x
  4. 4. Fernandez de Grado G., Keller L., Idoux-Gillet Y., Wagner Q., Musset A.M., Benkirane-Jessel N., Bornert F., Offner D. Bone Substitutes: A Review of Their Characteristics, Clinical Use, and Perspectives for Large Bone Defects Management // J. Tissue Eng. 2018. V. 9. P. 2041731418776819-01–2041731418776819-18. https://doi.org/10.1177/2041731418776819
  5. 5. Bohner M. Calcium Orthophosphates in Medicine: From Ceramics to Calcium Phosphate Cements // Injury. 2000. V. 31. № 4. P. 37–47. https://doi.org/10.1016/s0020-1383 (00)80022-4
  6. 6. Giulia B., Sourav P., Lucia Sch., Stefano S., Lisa B., Massimo Del F. The Impact of the Bioceramic Scaffolds on Bone Regeneration in Preclinical in Vivo Studies: A Systematic Review // Materials. 2020. V. 13. № 7. P. 1500–1526. https://doi.org/10.3390/ma13071500
  7. 7. Wang C., Xue Y., Lin K., Lu J., Chang J., Sun J. The Enhancement of Bone Regeneration by a Combination of Osteoconductivity and Osteostimulation Using β-CaSiO3/β-Ca3(PO4)2 Composite Bioceramics // Acta Biomater. 2012. V. 8. № 1. P. 350–360. https://doi.org/10.1016/j.actbio.2011.08.019
  8. 8. Matsumoto N., Yoshida K., Hashimoto K., Toda Y. Dissolution Mechanisms of β-Tricalcium Phosphate Doped with Monovalent Metal Ions // J. Ceram. Soc. Jpn. 2010. V. 118. № 1378. P. 451–457. https://doi.org/10.2109/jcersj2.118.451
  9. 9. Goldberg M.A., Fomin A.S., Murzakhanov F.F., Makshakova O.N., Donskaya N.O., Antonova O.S., Gnezdilov O.I., Mikheev I.V., Knotko A.V., Kudryavtsev E.A., Akhmedova S.A., Sviridova I.K., Sergeeva N.S., Mamin G.V., Barinov S.M., Gafurov M.R., Komlev V.S. The Improved Textural Properties, Thermal Stability, and Cytocompatibility of Mesoporous Hydroxyapatite by Mg2+ Doping // Mater. Chem. Phys. 2022. V. 289. P. 126461-1–126461-19. https://doi.org/10.1016/j.matchemphys.2022.126461
  10. 10. Комлев В.С., Фадеева И.В., Гурин А.Н., Ковалева А.С., Смирнов В.В., Гурин Н.А., Баринов С.М. Влияние содержания карбонат-групп в карбонатгидроксиапатитовой керамике на ее поведение in vivo // Неорган. материалы. 2009. Т. 45. № 3. С. 373–378.
  11. 11. Safronova T.V., Putlyaev V.I. Powder Systems for Calcium Phosphate Ceramics // Inorg. Mater. 2017. V. 53. № 1. P. 17–26. https://doi.org/10.1134/S0020168516130057
  12. 12. Орлов Н.К., Киселевa А.К., Милькин П.А., Евдокимов П.В., Путляев В.И., Liu Y. Экспериментальное изучение высокотемпературной области системы Ca3(PO4)2–CaKPO4–CaNaPO4 // Журн. физ. химии. 2021. Т. 95. № 7. С. 982–986. https://doi.org/10.31857/S0044453721070190
  13. 13. Кнотько А.В., Мусоев Ш.А., Умиров У.Т. О возможности управления микро- и наноструктурой кальций-фосфатных цементов через катионные и анионные замещения в твердой фазе // Перспективные технологии и материалы. Материалы междунар. науч.-практ. конф. Севастополь: СевГУ, 2021. С. 132–136.
  14. 14. Ando J., Matsuno S. Ca3(PO4)2–CaNaPO4 System // Bull. Chem. Soc. Jpn. 1968. V. 41. № 2. P. 342–347. https://doi.org/10.1246/bcsj.41.342
  15. 15. Fix W., Heymann H., Heinke R. Subsolidus Relations in the System 2CaO·SiO2–3CaO·P2O5 // J. Am. Ceram. Soc. 1969. V. 52. № 6. P. 346–347. https://doi.org/10.1111/j.1151-2916.1969.tb11948.x
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library