RAS Chemistry & Material ScienceНеорганические материалы Inorganic Materials

  • ISSN (Print) 0002-337X
  • ISSN (Online) 3034-5588

Preparation, Structure, and Dielectric and Nonlinear Optical Properties of (K0.5Na0.5)NbO3–BaZrO3 Ceramics

PII
10.31857/S0002337X23020082-1
DOI
10.31857/S0002337X23020082
Publication type
Status
Published
Authors
Volume/ Edition
Volume 59 / Issue number 2
Pages
208-215
Abstract
Single-phase (1 – x)(K0.5Na0.5)NbO3⋅xBaZrO3 (x = 0–0.06) ceramics with new compositions, including those modified with SiO2 and ZnO oxide additions, have been prepared and their crystal structure, microstructure, and dielectric and nonlinear optical properties have been studied. A phase with the perovskite structure and an orthorhombic unit cell has been shown to form in all of the synthesized materials. Partial replacement of cations of the basic composition by cations of the combined additive has been demonstrated to cause an increase in unit-cell volume. The ferroelectric phase transitions in the ceramics have been confirmed by dielectric spectroscopy and laser radiation second harmonic generation measurements. Doping with SiO2 and ZnO oxide additions has been shown to lower the temperatures of the transitions from the orthorhombic ferroelectric phase to a tetragonal ferroelectric one and then to a cubic paraelectric phase.
Keywords
ниобат калия-натрия структура перовскита рентгендифракционный анализ микроструктура диэлектрические свойства
Date of publication
14.09.2025
Year of publication
2025
Number of purchasers
0
Views
4

References

  1. 1. Gupta V., Sharma M., Thakur N. Optimization Criteria for Optimal Placement of Piezoelectric Sensors and Actuators on a Smart Structure: A Technical Review // J. Intell. Mater. Syst. Struct. 2010. V. 21. P. 1227–1243. https://doi.org/10.1177/1045389X10381659
  2. 2. Sodano H.A., Henry A., Inman D.J., Park G. Comparison of Piezoelectric Energy Harvesting Devices for Recharging Batteries // J. Intell. Mater. Syst. Struct. 2005. V. 16. P. 799–807. https://doi.org/10.1177/1045389X05056681
  3. 3. Sodano H.A., Park G., Inman D.J. Estimation of Electric Charge Output for Piezoelectric Energy Harvesting // Strain. 2004. V. 40. P. 49–58. https://doi.org/10.1111/j.1475-1305.2004.00120.x
  4. 4. Веневцев Ю.Н., Политова Е.Д., Иванов С.А. Сегнето- и антисегнетоэлектрики семейства титаната бария. М.: Химия, 1985. 256 с.
  5. 5. Zhang Sh.J., Eitel R.E., Randall C.A., Shrout T.R., Alberta E.F. Manganese-Modified BiScO3–PbTiO3 Piezoelectric Ceramic for High-Temperature Shear Mode Sensor // Appl. Phys. Lett. 2005. V. 86. P. 262904–262904-3. https://doi.org/10.1063/1.1968419
  6. 6. Maeder M.D., Damjanovic D., Setter N. Lead Free Piezoelectric Materials // J. Electroceram. 2004. V. 13. P. 385–392. https://doi.org/10.1007/S10832-004-5130-Y
  7. 7. Saito Y., Takao H., Tani I., Nonoyama T., Takatori K., Homma T., Nagaya T., Nakamura M. Lead-Free Piezoceramics // Nature. 2004. V. 432. P. 84–87. https://doi.org/10.1038/nature03028
  8. 8. Takenaka T., Nagata H., Hiruma Y., Yoshii Y., Matumoto K. Lead-Free Piezoelectric Ceramics Based on Perovskite Structures // J. Electroceram. 2007. V. 19. P. 259–265. https://doi.org/10.1007/s10832-007-9035-4
  9. 9. Takenaka T., Nagata H., Hiruma Y. Current Development and Prospective of Lead-Free Piezoelectric Ceramics // Jpn. J. Appl. Phys. 2008. V. 47. P. 3787–3801. https://doi.org/10.1143/JJAP.47.3787
  10. 10. Rödel J., Jo W., Seifert T.P., Anton E.-M., Granzow T., and Damjanovic D. Perspective of the Development of Lead-Free Piezoceramics // J. Am. Ceram. Soc. 2009. V. 92. P. 1153– 1177. https://doi.org/10.1111/j.1551-2916.2009.03061.x
  11. 11. Panda P.K. Review: Environmental Friendly Lead-Free Piezoelectric Materials // J. Mater. Sci. 2009. V. 44. P. 5049–5062. https://doi.org/10.1007/s10853-009-3643-0
  12. 12. Zhen Y.H., Li J.F. Normal Sintering of (K,Na)NbO3-Based Ceramics: Influence of Sintering Temperature on Densification, Microstructure, and Electrical Properties // J. Am. Ceram. Soc. 2006. V. 89. P. 3669–3675. https://doi.org/10.1111/j.1551-2916.2006.01313.x
  13. 13. Bernard J., Bencan A., Rojac T., Holc J., Malic B., Kosec M. Low Temperature Sintering of (K0.5Na0.5)NbO3 Ceramics // J. Am. Ceram. Soc. 2008. V. 91. P. 2409–2411. https://doi.org/10.1111/j.1551-2916.2008.02447.x
  14. 14. Guo Y., Kakimoto K.-I., Ohsato H. Phase Transitional Behavior and Piezoelectric Properties of (Na0.5K0.5)NbO3–LiNbO3 Ceramics // Appl. Phys. Lett. 2004. V. 85. P. 4121–4123. https://doi.org/10.1063/1.1813636
  15. 15. Ming B.Q., Wang J.F., Qi P., Zang G.Z. Piezoelectric Properties of (Li, Sb, Ta) Modified (Na,K)NbO3 Lead-Free Ceramics // J. Appl. Phys. 2007. V. 101. P. 054103–054103-4. https://doi.org/10.1063/1.2436923
  16. 16. Jiang X.P., Yang Q., Yu Z.D., Hu F., Chen C., Tu N., Li Y.M. Microstructure and Electrical Properties of Li0.5Bi0.5TiO3-Modified (Na0.5K0.5)NbO3 Lead-Free Piezoelectric Ceramics // J. Alloys Compd. 2010. V. 493. P. 276–280. https://doi.org/10.1016/j.jallcom.2009.12.079
  17. 17. Lin D., Kwok K.W., Chan H.L.W. Dielectric and Piezoelectric Properties of K0. 5Na0.5NbO3 – AgSbO3 Lead-Free Ceramics // J. Appl. Phys. 2009. V. 106. P. 034102–034102-5. https://doi.org/10.1063/1.3186039
  18. 18. Sun X., Chen J., Yu R., Sun C., Liu G., Xing X., Qiao L. BiScO3 Doped (Na0.5K0.5)NbO3 Lead-Free Piezoelectric Ceramics // J. Am. Ceram. Soc. 2009. V. 92. P. 130–132. https://doi.org/10.1111/j.1551-2916.2008.02863.x
  19. 19. Hao J., Xu Z., Chua R., Zhanga Y., Li G., Yin Q. Effects of MnO2 on Phase Structure, Microstructure and Electrical Properties of (K0.5Na0.5)0.94Li0.06NbO3 Lead-Free Ceramics // Mater. Chem. Phys. 2009. V. 118. № 1. P. 229–233. https://doi.org/10.1016/j.matchemphys.2009.07.046
  20. 20. Politova E.D., Golubko N.V., Kaleva G.M., Mosunov A.V., Sadovskaya N.V., Stefanovich S.Yu., Kiselev D.A., Kislyuk A.M., Panda P.K. Processing and Characterization of Lead-Free Ceramics on the Base of Sodium–Potassium Niobate // J. Adv. Dielectr. 2018. V. 8. № 1. 1850004 (8 p.). https://doi.org/10.1142/S2010135X18500042
  21. 21. Politova E.D., Golubko N.V., Kaleva G.M., Mosunov A.V., Sadovskaya N.V., Stefanovich S.Yu., Kiselev D.A., Kislyuk A.M., Chichkov M.V., Panda P.K. Structure, Ferroelectric and Piezoelectric Properties of KNN-Based Perovskite Ceramics // Ferroelectrics. 2019. V. 538 P. 45–51. https://doi.org/10.1080/00150193.2019.1569984
  22. 22. Kim J.-W., Ryu J., Hahn B.-D., Choi J.-J., Yoon W.-H., Ahn C.-W., Choi J.-H., Park D.-S. Physical Properties of A(Cu1/3Nb2/3)O3 (A = Ba, Sr, Ca)-Substituted BaTiO3 System Grown by Using Aerosol Deposition // J. Korean Phys. Soc. 2013. V. 63. № 12. P. 2296–2300. https://doi.org/10.3938/jkps.63.2296
  23. 23. Политова Е.Д., Калева Г.М., Мосунов А.В., Садовская Н.В., Ильина Т.С., Киселев Д.А., Шварцман В.В. Получение и свойства модифицированных керамик ниобата калия-натрия // Журн. неорган. химии. 2021. Т. 66. № 8. С. 1156–1162. https://doi.org/10.31857/S0044457X21080237
  24. 24. Калева Г.М., Политова Е.Д., Мосунов А.В., Стефанович С.Ю. Фазообразование, структура и диэлектрические свойства модифицированной керамики ниобата калия-натрия // Неорган. материалы. 2020. Т. 56. № 10. С. 1130–1136. https://doi.org/10.31857/S0002337X20100073
  25. 25. Louër D., Weigel D., Louboutin R. Méthode Directe de Correction des Profils de Raies de Diffraction des Rayons X. I. Méthode Numérique de Déconvolution // Acta Crystallogr., Sect. A. 1969. V. 25. P. 335–338. https://doi.org/10.1107/s0567739469000556
  26. 26. Louboutin R., Louër D. Méthode Directe de Correction des Profils de Raies de Diffraction des Rayons X. III. Sur la Recherche de la Solution Optimale Lors de la Déconvolution // Acta Crystallogr., Sect. A. 1972. V. 28. P. 396–400. https://doi.org/10.1107/S056773947200107X
  27. 27. Le Bail A., Louër D. Smoothing and Validity of Crystallite-Size Distributions from X-ray Line-Profile Analysis // J. Appl. Crystallogr. 1978. V. 11. P. 50–55. https://doi.org/10.1107/S0021889878012662
  28. 28. Zhurov V.V., Ivanov S.A. PROFIT Computer Program for Processing Powder Diffraction Data on an IBM PC with a Graphic User Interface // Crystallogr. Rep. 1997. V. 42. P. 202–206.
  29. 29. Maltoni P., Sarkar T., Varvaro G., Barucca G., Ivanov S.A., Peddis D., Mathieu R. Towards bi-Magnetic Nanocomposites as Permanent Magnets through the Optimization of the Synthesis and Magnetic Properties of SrFe12O19 Nanocrystallites // J. Phys. D: Appl. Phys. 2021. V. 54. P. 124004–124017.
  30. 30. Maltoni P., Ivanov S.A., Barucca G., Varvaro G., Peddis D., Mathieu R. Complex Correlations between Microstructure and Magnetic Behavior in SrFe12O19 Hexaferrite Nanoparticles // Sci. Rep. 2021. V. 11. P. 23307–23316. https://doi.org/10.1038/s41598-021-02782-2
  31. 31. Kurtz S.K., Perry T.T. A Powder Technique for the Evaluation of Nonlinear Optical Materials // J. Appl. Phys. 1968. V. 39. № 8. P. 3798–3813. https://doi.org/10.1109/JQE.1968.107510810.1109/JQE.1968.1075108https://doi.org/10.1063/1.1656857
  32. 32. Stefanovich S.Yu. Second Harmonic in Reflection in Material Science of Ferroelectrics // Eur. Conf. on Lasers and Elecrto-Optics (CLEO-Europe'94). Amsterdam. 1994. P. 249–250.
  33. 33. Jerphagnon J. Invariants of the Third-Rank Cartesian Tensor: Optical Nonlinear Susceptibilities // Phys. Rev. B. 1970. V. 2. № 4. P. 1091–1098. https://doi.org/10.1103/PhysRevB.2.1091
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library