RAS Chemistry & Material ScienceНеорганические материалы Inorganic Materials

  • ISSN (Print) 0002-337X
  • ISSN (Online) 3034-5588

Structure and Phase Formation in Arc PVD Zr–B–Si–C–Ti–(N) Coatings

PII
10.31857/S0002337X23020033-1
DOI
10.31857/S0002337X23020033
Publication type
Status
Published
Authors
Volume/ Edition
Volume 59 / Issue number 2
Pages
162-168
Abstract
Zr–B–Si–C–Ti and Zr–B–Si–C–Ti–N coatings have been produced for the first time by an arc physical vapor deposition process in a residual argon + nitrogen atmosphere. The Zr–B–Si–C–Ti coating had an amorphous–nanocrystalline structure. Nanocrystallites were formed in the Ti–B–C system, and the amorphous component of the material was formed by Zr–B–C and Si–C phases. The coating of the latter system had a predominantly amorphous structure (amorphous content of ~85–93%) based on titanium nitride with Ti–B and Ti–C bonds, zirconium carboboronitride (Zrx(C,N,B)y), zirconium boride, and silicon carbonitride.
Keywords
ионно-плазменные вакуумно-дуговые покрытия аморфная структура нанокристаллическая структура карбид карбонитрид карбоборид карбоборнитрид фазообразование энергия связи элементов термическая устойчивость структуры
Date of publication
01.02.2023
Year of publication
2023
Number of purchasers
0
Views
48

References

  1. 1. Monteverde F., Scatteia L. Resistance to Thermal Shock and to Oxidation of Metal Diborides–SiC Ceramics for Aerospace Application // J. Am. Ceram. Soc. 2007. V. 90. P. 1130–1138.
  2. 2. Chamberlain A., Fahrenholtz W., Hilmas G., Ellerby D. Oxidation of ZrB2–SiC Ceramics under Atmospheric and Reentry Conditions // Refract. Appl. Trans. 2005. V. 1. № 2. P. 2–8.
  3. 3. Воронов В.А., Лебедев Ю.Е., Чайников А.С., Ткаленко Д.М., Шавнев А.А. Влияние вискерсов карбида кремния на физико-механические свойства керамического композиционного материала ZrB2/SiC // Неорган. материалы. 2022. Т. 58. № 1. С. 110–116. https://doi.org/10.31857/S0002337X22010134
  4. 4. Yang X., Wei L., Song W. ZrB2/SiC as a Protective Coating for C/SiC Composites: Effect of High Temperature Oxidation on Mechanical Properties and Anti–Ablation Property // Composites, Part B. 2013. V. 45. P. 1391–1396. https://doi.org/10.1016/j.compositesb.2012.07.007
  5. 5. Wang D., Zeng Y., Xiong X. Preparation and Ablation Properties of ZrB2–SiC Protective Laminae for Carbon/Carbon Composites // Ceram. Int. 2014. V. 40. P. 14215–14222. https://doi.org/10.1016/j.ceramint.2014.06.010
  6. 6. Zou X., Fu Q., Liu L. ZrB2–SiC Coating to Protect Carbon/Carbon Composites Against Ablation // Surf. Coat. Technol. 2013. V. 226. P. 17–21. https://doi.org/10.1016/j.surfcoat.2013.03.027
  7. 7. Krella A. Resistance of PVD Coatings to Erosive and Wear Processes: A Review // Coat. 2020. V. 10. P. 921. https://doi.org/10.3390/coatings10100921
  8. 8. Brown I.G. Cathodic Arc Deposition of Films // Ann. Rev. Mater. Sci. 1998. V. 28. P. 243–269. https://doi.org/10.1146/annurev.matsci.28.1.243
  9. 9. Anders A.A. Review Comparing Cathodic Arcs and High-Power Impulse Magnetron Sputtering (HiPIMS) // Surf. Coat. Technol. 2014. V. 257. P. 308–325. https://doi.org/10.1016/j.surfcoat.2014.08.043
  10. 10. Takikawa H. Review of Cathodic Arc Deposition for Preparing Droplet–Free Thin Films // Int. Symp. on Discharges and Elect. Insulation in Vac. 2007. V. 35. P. 992–999. https://doi.org/10.1109/TPS.2007.897907
  11. 11. Sanders D.M., Anders A. Review of Cathodic Arc Deposition Technology at the Start of the New Millennium // Surf. Coat. Technol. 2000. V. 133–134. P. 78–90. https://doi.org/10.1016/S0257-8972 (00)00879-3
  12. 12. Ian C., Madsen I., Nicola V.Y., Scarlett I., Arnt K. Description and Survey of Methodologies for the Determination of Amorphous Content via X-ray Powder Diffraction // Z. Kristallogr. 2011. V. 226. P. 944–955. https://doi.org/10.1524/zkri.2011.1437
  13. 13. ASM Metals Handbook. V. 12. Fractography, ASM, 2002.
  14. 14. David B.W., Carter C.B. Transmission Electron Microscopy. A Textbook for Materials Science: N.Y.: Springer, 2009.
  15. 15. Jutter B., Kleberg I. The Retrograde Motion of Arc Cathode Spots in Vacuum // J. Phys. D: Appl. Phys. 2000. V. 33 P. 2025–2036.
  16. 16. Beilis I. Vacuum Arc Cathode Spot Theory: History and Evolution of the Mechanisms // IEEE Trans. Plasma Sci. 2019. V. 47. P. 3412–3433. https://doi.org/10.1109/TPS.2019.2904324
  17. 17. Craciun V., McCumiskey E., Hanna M. Very Hard ZrC Thin Films Grown by Pulsed Laser Deposition // J. Eur. Ceram. Soc. 2013. V. 33. P. 2223–2226. https://doi.org/10.1016/j.jeurceramsoc.2013.01.001
  18. 18. Badrinarayanan S., Sinha S. XPS Studies of Nitrogen Ion Implanted Zirconium and Titanium // J. Solid State Chem. 1989. V. 49. P. 303–309.
  19. 19. Chen L., Goto T., Hirai T. State of Boron in Chemical Vapour–Deposited SiC–B Composite Powders // J. Mater. Sci. Lett. 1990. V. 9. P. 997–999. https://doi.org/10.1007/BF00727857
  20. 20. Didziulis S., Fleischauer P. Effects of Chemical Treatments on SiC Surface Composition and Subsequent MoS2 Film Growth // Langmuir. 1990. V. 6. P. 621–627. https://doi.org/10.1021/la00093a017
  21. 21. Yan S., Fu T., Wang R., Tian C., Wang Z., Huang Z., Yang B., Fu D. Deposition of CrSiN/AlTiSiN Nano-Multilayer Coatings by Multi-Arc Ion Plating Using Gas Source Silicon // Nucl. Instrum. Methods Phys. Res, Sect. B. 2013. V. 324. P. 35–40. https://doi.org/10.1016/j.nimb.2013.01.084
  22. 22. Dreiling I., Raisch C., Glaser J., Stiens D., Chassé T. Characterization and Oxidation Behavior of MTCVD Ti–B–N Coatings // Surf. Coat. Technol. 2011. V. 206. P. 479–486. https://doi.org/10.1016/j.surfcoat.2011.07.067
  23. 23. Ettmayer P., Lengauer W. Nitrides // Ullmann’s Encyclopedia of Ind. Chem. 2000. https://doi.org/10.1002/14356007.a17_341
  24. 24. Shatynski S.R. The Thermochemistry of Transition Metal Carbides // Oxid. Met. 1979. V. 13. P. 105–118. https://doi.org/10.1007/BF00611975
  25. 25. Li Y.-F., Xu H., Xia Q.-L., Liu X.-L. First-Principles Calculation of Structural and Thermodynamic Properties of Titanium Boride // J. Cent. South Univ. Technol. 2011. V. 18. P. 1773–1779. https://doi.org/10.1007/s11771-011-0901-5
  26. 26. Zhu Y., Cheng L., Li M., Ma B., Liu Y., Zhang L. The Synthesis and Characterization of CVD ZrB2 Coating from ZrCl4–BCl3–H2–Ar System // Ceram. Int. 2018. V. 44. P. 2002–2010. https://doi.org/10.1016/j.ceramint.2017.10.145
  27. 27. Peshev P. A Thermodynamic Estimation of the Chemical Vapor Deposition of Some Borides // J. Solid State Chem. 2000. V. 154. P. 157–161. https://doi.org/10.1006/jssc.2000.8828
  28. 28. Prieto P., Kirby R.E. X-ray Photoelectron Spectroscopy Study of the Difference between Reactively Evaporated and Direct Sputter-Deposited TiN Films and Their Oxidation Properties // J. Vac. Sci. Technol., A. 1995. V. 13. P. 2819. https://doi.org/10.1116/1.579711
  29. 29. Mavel G., Escard J., Costa P. ESCA (Electron Spectroscopy for Chemical Analysis) Study of Metal Borides // J. Cast., Surf. Sci. 1973. V. 35. P. 109–116.
  30. 30. Galuska A.A., Uht J.C., Marquez N. Reactive and Nonreactive Ion Mixing of Ti Films on Carbon Substrates // J. Vac. Sci. Technol., A. 1988. V. 6. P. 110–122. https://doi.org/10.1116/1.574992
  31. 31. Chastain R.C., King Jr. Handbook of X-ray Photoelectron Spectroscopy // N.Y.: Perkin-Elmer, 1992.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library