- Код статьи
- S30345588S0002337X25030037-1
- DOI
- 10.7868/S3034558825030037
- Тип публикации
- Статья
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том 61 / Номер выпуска 5-6
- Страницы
- 284-290
- Аннотация
- В работе получена графитовая фольга (ГФ) из терморасширенного графита на основе интеркалированных соединений графита (ИСГ) с азотной кислотой IV, III, II ступеней и ИСГ с азотной и ортофосфорной кислотами. Структура полученных ИСГ и образование определенной ступени, а также внедрение фосфорной кислоты подтверждались методом рентгенофазового анализа. Морфология промежуточных продуктов (окисленного графита и терморасширенного графита) и конечной ГФ исследовалась методом сканирующей электронной микроскопии с энергодисперсионной рентгеновской спектроскопией. Подтверждено наличие фосфора в промежуточных продуктах и ГФ на основе ИСГ с азотной и фосфорной кислотами. Термический анализ показал большую термическую устойчивость на воздухе при повышенной температуре ГФ на основе ИСГ с азотной кислотой IV ступени в сравнении со II ступенью, а также значительное увеличение термической устойчивости ГФ на основе ИСГ с азотной и фосфорной кислотами.
- Ключевые слова
- углеродные материалы интеркалированные соединения графита термические свойства термогравиметрия
- Дата публикации
- 17.03.2025
- Год выхода
- 2025
- Всего подписок
- 0
- Всего просмотров
- 26
Библиография
- 1. Solfiti E., Wan D., Celotto A., Solieri N., Muñoz P.A., Ximenes R.F., Heredia J.M., Martin C.L.T., Perillo-Marcone A., Nuiry F.X., Alvaro A., Berto F., Calviani M. FIB-SEM Investigation and Uniaxial Compression of Flexible Graphite // Mater. Des. 2023. V. 233. 112187. https://doi.org/10.1016/j.matdes.2023.112187
- 2. Yurkov A.L. Studying the Porosity of Graphite Foil with Different Densities: Pore Space Model and Gas Permeability // J. Mater. Sci. 2022. V. 57. P. 156–171. https://doi.org/10.1007/s10853-022-07677-9
- 3. Qiu T. Research on the Thickness Effect and Micro-Fracture Mechanism of Graphite Sheets with Layered Structures // Diamond Relat. Mater. 2024. V. 143. 110908. https://doi.org/10.1016/j.diamond.2024.110908
- 4. Ivanov A.V., Yurkov A.L., Kalachev I.L., Maksimova N.V., Malakho A.P., Volkova S.I., Avdeev V.V. The Influence of Processing Conditions on Gas Transport and Thermal Properties of Graphite Foil Compressed from Exfoliated Graphite // Processes. 2023. V. 11. № 1. 144. https://doi.org/10.3390/pr11010144
- 5. Afanasov I.M., Shornikova O.N., Kirilenko D.А., Vlasov I.I., Zhang L., Verbeeck J., Avdeev V.V., Tendeloo G.V. Graphite Structural Transformations During Intercalation by HNO3 and Exfoliation // Carbon. 2010. V. 48. P. 1862–1865. https://doi.org/10.1016/j.carbon.2010.01.055
- 6. Dimiev A.M., Ceriotti G., Behabtu N., Zakhidov D., Pasquali M., Saito R., Tour J.M. Direct Real-Time Monitoring of Stage Transitions in Graphite Intercalation Compounds // Nano. 2013. V. 7. № 3. P. 2773–2780. https://doi.org/10.1021/nn400207e
- 7. Dimiev A.M., Shukhina K., Behabtu N., Pasquali M., Tour J.M. Stage Transitions in Graphite Intercalation Compounds: Role of the Graphite Structure // J. Phys. Chem. C. 2019. V. 123. P. 246–253. https://doi.org/10.1021/acs.jpcc.9b06726
- 8. Rimkute G., Gudaitis M., Barkauskas J., Zarkov A., Niaura G., Gaidukevic J. Synthesis and Characterization of Graphite Intercalation Compounds with Sulfuric Acid // Crystals. 2022. V. 12. № 3. 421. https://doi.org/10.3390/cryst12030421
- 9. Ivanov A.V. Effect of Preparation Conditions on Gas Permeability and Sealing Efficiency of Graphite Foil // J. Mater. Sci. 2019. V. 54. P. 457–469. https://doi.org/10.1007/s10853-018-3151-1
- 10. Saidaminov M.I. Thermal Decomposition of Graphite Nitrate // Carbon. 2013. V. 59. P. 337–343. https://doi.org/10.1016/j.carbon.2013.03.028
- 11. Сорокина Н.Е., Шорникова О.Н., Авдеев В.В. Области образования интеркалированных соединений графита в системах графит–HNO3(H2SO4)–H2O–KMnO4 // Неорган. материалы. 2007. Т. 43. № 8. С. 924–928.
- 12. Zongrong Y. Preparation and Characterization of Low-Temperature Expandable Graphite // Mater. Res. Bull. 2008. V. 43. P. 677–686. https://doi.org/10.1016/j.materresbull.2007.10.027
- 13. Cermak M. Material Properties and Structure of Natural Graphite Sheet // Sci. Rep. 2020. V. 10. 18672. https://doi.org/10.1038/s41598-020-75393-y
- 14. Xiaowei L., Jean-Charles R., Suyuan Y. Effect of Temperature on Graphite Oxidation Behavior // Nucl. Eng. Des. 2004. V. 227. P. 273–280. https://doi.org/10.1016/j.nucengdes.2003.11.004
- 15. Lu W., Chung D.D.L. Oxidation Protection of Carbon Materials by Acid Phosphate Impregnation // Carbon. 2002. V. 40. P. 1249–1254. https://doi.org/10.1016/S0008-6223 (01)00297-4
- 16. Yoshida K. Surface Modification of Graphite Powder with Lanthanum Ultraphosphate by Chemical Process and its Oxidation Resistance // Adv. Powder Technol. 2015. V. 26. P. 901–906. https://doi.org/10.1016/j.apt.2015.03.005
- 17. Lin Y., Liu T., Wang J., Lu J., Dong X., Feng X. Fabrication and Oxidation Resistance Behavior of Phosphate/Borate Impregnation for Graphite // J. Coat. Technol. 2020. V. 389. 125632. https://doi.org/10.1016/j.surfcoat.2020.125632
- 18. Wu X., Radovic L.R. Inhibition of Catalytic Oxidation of Carbon/Carbon Composites by Phosphorus // Carbon. 2006. V. 44. P. 141–151. https://doi.org/10.1016/j.carbon.2005.06.038
- 19. Badenhorst H. Novel Simulation Technique for the Prediction of Complex Oxidation Behaviour in Natural Graphite Flakes // Chem. Eng. Sci. 2013. V. 104. P. 117–124. https://doi.org/10.1016/j.ces.2013.09.013
- 20. Badenhorst H. A Generalized Solid State Kinetic Expression for Reaction Interface-Controlled Reactivity // Thermochim. Acta. 2013. V. 562. P. 1–10. https://doi.org/10.1016/j.tca.2013.03.022
- 21. Liu J. First Principles Study of Oxidation Behavior of Irradiated Graphite // Nucl. Instrum. Methods Phys. Res. 2015. V. 352. P. 160–166. https://doi.org/10.1016/j.nimb.2014.12.071
- 22. Savchenko D.V. Improvement of the Oxidation Stability and the Mechanical Properties of Flexible Graphite Foil by Boron Oxide Impregnation // New Carbon Mater. 2012. V. 27. P. 12–18. https://doi.org/10.1016/S1872-5805 (12)60001-8
- 23. Сорокина Н.Е., Максимова Н.В., Никитин А.В., Шорникова О.Н., Авдеев В.В. Синтез соединения внедрения в системе графит–HNO3–H3PO4 // Неорган. материалы. 2001. Т. 37. № 6. С. 697–703.
- 24. Сорокина Н.Е., Максимова Н.В., Авдеев В.В. Интеркалирование графита в тройных системах C–HNO3–R, где R – H2O, CH3COOH, H3PO4, H2SO4 // Неорган. материалы. 2002. Т. 38. № 6. С. 687–694.
- 25. Maksimova N.V., Sorokina N.E., Shornikova O.N., Avdeev V.V. Thermal Properties of Graphite Intercalation Compounds with Acids // J. Phys. Chem. Solids. 2004. V. 65. P. 177–180. https://doi.org/10.1016/j.jpcs.2003.10.013
- 26. Лешин В.С., Сорокина Н.Е., Авдеев В.В. Электрохимический синтез коинтеркалированных соединений внедрения в системе графит–Н2SО4–Н3РО4 // Электрохимия. 2005. Т. 41. № 5. С. 651–655.
- 27. Huang J., Tang Q., Liao W., Wang G., Wei W., Li C. Green Preparation of Expandable Graphite and its Application in Flame-Resistance Polymer Elastomer // Ind. Eng. Chem. Res. 2017. V. 56. P. 253–261. https://doi.org/10.1021/acs.iecr.6b04860
- 28. Li Y. The role of H3PO4 in the Preparation of Activated Carbon from NaOH-Treated Rice Husk Residue // RSC Adv. 2015. V. 5. P. 626–636. https://doi.org/10.1039/c5ra04634c