- Код статьи
- S3034558825040031-1
- DOI
- 10.7868/S3034558825040031
- Тип публикации
- Статья
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том 61 / Номер выпуска 7-8
- Страницы
- 403-410
- Аннотация
- Для синтеза наночастиц меди использован метод индукционной потоковой левитации. Изучена кинетика роста оксидной пленки на медных наночастица, что важно для понимания механизмов их пассивации и стабилизации. Исследовано влияние соотношения хладагента и окислителя на скорость роста оксидной пленки, что позволяет контролировать морфологию и состав наночастиц. Также проведено исследование старения медных наночастиц в течение 6 месяцев для оценки их устойчивости к окислению и агрегации.
- Ключевые слова
- наночастицы индукционная потоковая левитация прямой синтез оксид меди core/shell
- Дата публикации
- 15.04.2025
- Год выхода
- 2025
- Всего подписок
- 0
- Всего просмотров
- 21
Библиография
- 1. Narayanan R., El-Sayed M.A. Shape-Dependent Catalytic Activity of Platinum Nanoparticles in Colloidal Solution // Nano Lett. 2004. V. 4. № 7. P. 1343–1348. https://doi.org/10.1021/nl0495256
- 2. Moura D., Souza M.T., Liverani L., Rella G., Luz G.M., Mano J.F., Boccaccini A.R. Development of a Bioactive Glass-Polymer Composite for Wound Healing Applications // Mater. Sci. Eng., C. 2017. V. 76. P. 224–232. https://doi.org/10.1016/J.MSEC.2017.03.037
- 3. Banerjee K., Das S., Choudhury P., Ghosh S., Baral R., Choudhuri S.K. A Novel Approach of Synthesizing and Evaluating the Anticancer Potential of Silver Oxide Nanoparticles in vitro // Chemotherapy. 2017. V. 62. P. 279–289. https://doi.org/10.1159/000453446
- 4. Gomez-Romero P. Hybrid Organic-Inorganic Materials – in Search of Synergic Activity // Adv. Mater. 2001. V. 13. № 3. P. 163–174. https://doi.org/10.1002/1521-4095 (200102)13:3 3.0.CO;2-U
- 5. Shaikh S.F., Mane R.S., Min B.K., Hwang Y.J., Joo O.S. D-Sorbitol-Induced Phase Control of TiO2 Nanoparticles and Its Application for Dye-Sensitized Solar Cells // Sci. Rep. 2016. V. 6. P. 1–10. https://doi.org/10.1038/srep20103
- 6. Gracias D.H., Tien J., Breen T.L., Hsu C., Whitesides G.M. Forming Electrical Networks in Three Dimensions by Self-Assembly // Science. 2000. V. 289. P. 1170–1172. https://doi.org/10.1126/science.289.5482.1170
- 7. Pacioni N.L., Borsarelli C.D., Rey V., Veglia A.V. Synthetic Routes for the Preparation of Silver Nanoparticles // Eng. Mater. 2015. P. 13–46. https://doi.org/10.1007/978-3-319-11262-6_2
- 8. Ahmed S., Ahmad M., Swami B.L., Ikram S. A Review on Plants Extract Mediated Synthesis of Silver Nanoparticles for Antimicrobial Applications: a Green Expertise // J. Adv. Res. 2016. V. 7. P. 17–28. https://doi.org/ 10.1016/j.jare.2015.02.007
- 9. Ozyurt D., Al Kobaisi M., Hocking R.K., Fox B. Properties, Synthesis, and Applications of Carbon Dots: a Review // Carbon Trends. 2023. V. 12. P. 1–27. https://doi.org/10.1016/j.cartre.2023.100276
- 10. Swathy B. A Review on Metallic Silver Nanoparticles // IOSR J. Pharm. 2014. V. 4. P. 38–44. https://doi.org/10.9790/3013-0407038044
- 11. Priyadarshana G., Kottegoda N., Senaratne A., De Alwis A., Karunaratne V. Synthesis of Magnetite Nanoparticles by Top-Down Approach from a High Purity Ore // J. Nanomater. 2015. P. 1–8. https://doi.org/10.1155/2015/317312
- 12. Griffiths W.D., Caden A.J., Chen Q. Effects of Transition Metal Additions on Double-Oxide Film Defects in an Al–Si–Mg Alloy // Mater. Sci. Technol. 2017. V. 33. P. 2212–2222. https://doi.org/10.1080/02670836.2017.1346911
- 13. Takrori F.M., Ayyad A. Surface Energy of Metal Alloy Nanoparticles // Appl. Surf. Sci. 2017. V. 401. P. 65–68. https://doi.org/10.1016/J.APSUSC.2016.12.208
- 14. Nath S., Jana S., Pradhan M., Pal T. Ligand-Stabilized Metal Nanoparticles in Organic Solvent // J. Colloid Interface Sci. 2010. V. 341. P. 333–352. https://doi.org/10.1016/j.jcis.2009.09.049
- 15. Liu X., Ortega-Guerrero A., Domingues N.P., Pougin M.J., Smit B., Hosta-Rigau L., Oostenbrink C. Stability Assessment in Aqueous and Organic Solvents of Metal–Organic Framework PCN333 Nanoparticles Through a Combination of Physicochemical Characterization and Computational Simulations // Langmuir. 2024. V. 40. № 42. P. 21976–21984. https://doi.org/10.1021/ACS.LANGMUIR.4C01684
- 16. Denicourt-Nowicki A., Mordvinova N., Roucoux A. Metal Nanoparticles in Water: a Relevant Toolbox for Green Catalysis // Nanopart. Cat.: Adv. Synth. Appl. 2021. P. 43–71. https://doi.org/10.1002/9783527821761.CH3
- 17. Mayer A.B.R. Colloidal Metal Nanoparticles Dispersed in Amphiphilic Polymers // Polym. Adv. Technol. 2001. V. 12. P. 96–106. https://doi.org/10.1002/1099–1581 (200101/02)12:1/ 23.0.co;2-g
- 18. Sidorov S.N., Bronstein L.M., Valetsky P.M., Hartmann J., Cölfen H., Schnablegger H., Antonietti M. Stabilization of Metal Nanoparticles in Aqueous Medium by Polyethyleneoxide–Polyethyleneimine Block Copolymers // J. Colloid Interface Sci. 1999. V. 212. № 2. P. 197–211. https://doi.org/10.1006/JCIS.1998.6035
- 19. Gromov A., Il’in A., Teipel U., Pautova J. Passivation of Metal Nanopowders // Blackwell: Wiley, 2014. V. 6. P. 133–152. https://doi.org/10.1002/9783527680696
- 20. Sharaf E.M., Hassan A., AL-Salmi F.A., Albalwe F.M., Albalawi H.M.R., Darwish D.B., Fayad E. Synergistic Antibacterial Activity of Compact Silver/Magnetite Core-Shell Nanoparticles Core Shell Against Gram-Negative Foodborne Pathogens // Front. Microbiol. 2022. V. 13. https://doi.org/10.3389/fmicb.2022.929491
- 21. Matlou G.G., Abrahamse H. Metallic Core-Shell Nanoparticles as Drug Delivery Vehicles in Targeted Photodynamic Therapy of Cancer // Handbook of Oxidative Stress in Cancer. Singapore: Springer, 2022. V. 1. P. 1245–1260. https://doi.org/10.1007/978-981-16-5422-0_208
- 22. Verma J., Geng Y., Wang J., Goel S. Fabrication and Testing of a Multifunctional SiO2@ZnO Core-Shell Nanospheres Incorporated Polymer Coating for Sustainable Marine Transport // Sci. Rep. 2023 V. 13. Р. 12321. https://doi.org/10.1038/s41598-023-39423-9
- 23. Kang B.K., Choi Y.J., Choi H.W., Bin Kwon S., Kim S., Kim Y.J., Park J.S., Yang W.S., Yoon D.H., Ryu W.H. Rational Design and In-Situ Formation of Nickel–Cobalt nitride Multi-Core/Hollow N-Doped Carbon Shell Anode for Li-ion Batteries // Chem. Eng. J. 2021. V. 420. № 1. P. 129630. https://doi.org/10.1016/j.cej.2021.129630
- 24. Singh C., Mehata A.K., Priya V., Malik A.K., Setia A., Suseela M.N.L., Vikas M.N.L, Gokul P., Samridhi P., Singh S.K., Muthu M.S. Bimetallic Au–Ag Nanoparticles: Advanced Nanotechnology for Tackling Antimicrobial Resistance // Molecules. 2022. V. 27. № 20. P. 7059. https://doi.org/10.3390/molecules27207059
- 25. Isa S.Z.M., Zainon R., Tamal M. State of the Art in Gold Nanoparticle Synthesisation Via Pulsed Laser Ablation in Liquid and Its Characterisation for Molecular Imaging: a Review // Materials. 2022. V. 15. № 24. P. 875. https://doi.org/10.3390/ma15030875
- 26. Kapinos A.A., Markov A.N., Petukhov A.N., Otvagina K.V., Kazarina O.V., Vorotyntsev A.V. Direct Synthesis of Copper and Copper Oxide Nanoparticles from Bulk Materials by the Induction Flow Levitation Technique // Inorg. Mater. 2022. V. 58. P. 931–938. https://doi.org/10.1134/S0020168522090060
- 27. Markov A.N., Vorotyntsev A.V., Kapinos A.A., Petukhov A.N., Pryakhina V.I., Kazarina O.V., Atlaskin A.A., Otvagina K.V., Vorotyntsev V.M., Vorotyntsev I.V. Direct Synthesis of Al, Mg, Ni, and Ti Nanoparticles by Induction Flow Levitation Technique // ACS Sustainable Chem. Eng. 2022. V. 10. № 24. P. 7929–7941. https://doi.org/10.1021/ACSSUSCHEMENG.2C00940