Методами термического анализа и рентгеновской дифракции исследовано фазообразование в наноразмерных порошковых системах составов (ZrO)(SmO), где x = 3–6 мол.%, полученных после термообработки прекурсоров, синтезированных гидролизным золь–гель-способом, при температурах 180, 750, 950, 1350 и 1450°С. Установлены температурные и концентрационные интервалы образования нанокристаллических твердых растворов с кубической, тетрагональной и моноклинной сингониями. Данные результаты имеют практическое значение при установлении температуры спекания порошков с целью получения керамики с определенным фазовым составом.
Методом осаждения из растворов получены наноразмерные порошки церийсодержащих трикальцийфосфатов (ТКФ, Ca3(PO4)2) со структурой витлокита. Содержание церия в материалах после термической обработки при 1300°C составило 0, 0.07, 0.18 и 0.39 мас. %, что соответствует значениям х = 0, 0.0025, 0.006, 0.013 для общей формулы Ca3 –хCe2х/3(PO4)2. С повышением содержания церия увеличивается термическая стабильность β-модификации ТКФ. Полученные церийсодержащие порошки ТКФ обладают люминесцентными свойствами при облучении источником света длиной волны 270–320 нм с максимумом при 360–390 нм, характерным для эмиссии Се3+. В зависимости от концентрации церия и температуры обработки материалов происходит смещение спектров свечения.
Получены композиты на основе нанопорошков, прекурсоры которых синтезированы гидролизным золь–гель-методом из 1 М растворов солей ZrOCl2, Al(NO3)3, Yb(NO3)3, Sr (NO3)2, количество которых отвечало базовому составу (мол. %): 50 Al2O3, 50 – n 3Yb-TZP (тетрагональный диоксид циркония, стабилизированный 3% Yb2O3) и модификатор SrO в количестве n = 1, 3 и 6%. Проведено исследование влияния количества модификатора на формирование фазового состава, микроструктуры и механические характеристики композитов. Установлено, что введение модификатора определяет смещение фазового перехода θ-Al2O3 → α-Al2O3 в область более высоких температур. Показано, что в процессе спекания исходных наноразмерных порошков in situ в температурном интервале 1250–1400°C происходит формирование фаз корунда и гексаалюмината стронция. Определено, что введение модификатора свыше 3% повышает закрытую пористость композитов, снижая параметр прочности с 700 до 450 МПа.
Изучено влияние фторида натрия как спекающей добавки для β-сиалонов на фазовый состав и физико-механические свойства Si5AlON7 и Si4Al2O2N6. Показано, что двухстадийный высокотемпературный обжиг β-сиалонов в атмосфере азота с добавлением NaF не приводит к значимым изменениям в фазовом составе образцов. Плотность и микротвердость полученных с добавлением 0.5 и 5.0 мас. % NaF образцов оказываются ниже, чем для образцов без спекающих добавок, однако прочность на изгиб демонстрирует рост на величину до +14.3% для Si5AlON7 при содержании NaF 0.5 мас. % и до +4.9% для Si4Al2O2N6 при содержании NaF 5.0 мас. %.
На синтезированных керамических образцах разрезов (1 – 2x)BiScO3·(2 – y)xPbTiO3∙yxPbMg1/3Nb2/3O3 с y = 1.2, 1.0, 0.9 и 0.5 тройной системы BiScO3–PbTiO3–PbMg1/3Nb2/3O3 (BS–PT–PMN) проведены рентгенодифракционные, диэлектрические и пьезоэлектрические исследования, а также изучены токи термостимулированной деполяризации. Установлено, что образцы при (1 – 2x) ≲ 0.5 представляют собой твердые растворы со структурой перовскита, их симметрия с ростом содержания BS повышается от тетрагональной до кубической, в промежуточной области составов (морфотропной области – МО) образцы состоят из смеси твердых растворов разной симметрии. Определены границы МО, получены данные об изменении диэлектрических и пьезоэлектрических свойств твердых растворов с изменением их состава.
В статье приведены результаты по синтезу, фазовому составу и оптическим свойствам оксинитрида алюминия Al5O6N, легированного ионами железа в широком диапазоне концентраций: от 0.01 до 5.0 ат. % (относительно алюминия). Все образцы, полученные обжигом смесей Al2O3, AlN и Fe2O3 при температуре 1750°С в токе азота, представляют собой практически однофазный γ-AlON с незначительными примесями нитрида алюминия и неидентифицированных фаз. Ширина запрещенной зоны Eg в AlON:Fe лежит в диапазоне 5.76–5.88 эВ в зависимости от концентрации железа. Обнаружены люминесценция AlON:Fe, обусловленная собственными дефектами и примесными центрами свечения, и зависимость интенсивности люминесценции полос свечения от концентрации Fe в AlON. Присутствие железа в AlON приводит к увеличению оптического поглощения и снижению интенсивности собственной люминесценции.
Индексирование
Scopus
Crossref
Higher Attestation Commission
At the Ministry of Education and Science of the Russian Federation