Методами циклической вольтамперометрии, оже-электронной спектроскопии и атомно-силовой микроскопии исследовано влияние ультразвуковой обработки поверхности мембранной фольги твердого раствора системы Pd–In–Ru на сорбцию водорода и водородопроницаемость. Показано, что такая обработка приводит к увеличению сорбции водорода в приповерхностный слой фольги при сохранении величины ее водородопроницаемости. Установлено, что ультразвуковая обработка позволяет сохранить без изменений морфологию, состав и структуру фольги.
Современными методами высокоразрешающей просвечивающей электронной микроскопии исследованы изменения структуры твердого раствора Cu (51 ат. %)–Pd. Установлен характер концентрационного расслоения неупорядоченного твердого раствора. Результаты могут быть положены в обоснование малой скорости процесса упорядочения при приближении состава к эквиатомному.
Контролируемой нитридизацией металлических пар Ti–V синтезированы керамические нитридные образцы заданных состава и формы. Установлены кинетические и вольтамперные зависимости взаимодействия металлических пар Ti–V с азотом. Для разных частей пары процесс азотирования характеризуется разными механизмами. Для чистых металлов формирование керамики, близкой к стехиометрическому составу, происходит через образование трех- и двухслойных градиентных структур. Нитридизация области спая, содержащего твердый раствор Ti–V, определяется химическим сродством титана и ванадия к азоту. Образование нитрида титана приводит к распаду твердого раствора Ti–V в спае и сепарации металлического ванадия на границах зерен. Скорость азотирования ванадия возрастает с уменьшением количества титана в твердом растворе. Проведена оценка величины термо-ЭДС системы Ti–V разной степени азотирования в интервале температур от –195.7 до +550°С. Установлены температурные зависимости термо-ЭДС и коэффициента Зеебека для металлокерамических и керамических структур. Для всех азотированных пар характерно монотонное увеличение термо-ЭДС во всем температурном интервале. Нитридизованные пары титан–ванадий заданного состава можно использовать в качестве керамических термоэлектрических преобразователей.
Для описания закономерностей изменения ударной вязкости и хладостойкости изучены две близкие по химическому составу низкоуглеродистые низколегированные малосернистые стали с ферритно-бейнитной микроструктурой. По результатам множественных испытаний на ударный изгиб в температурном интервале перехода от вязкого разрушения к хрупкому хладостойкость стали с пониженным содержанием серы и углерода (0.002% S и 0.106% C), которую оценивали по доле вязкой составляющей в изломах образцов, оказалась значительно выше хладостойкости стали с их повышенным содержанием (0.008% S и 0.120% C). Содержание бейнита в ферритно-бейнитной микроструктуре стали с повышенным содержанием S и С больше. Образование очагов скола в стали с повышенным содержанием S и С происходило преимущественно с участием MnS. Влияние неметаллических включений на зарождение скола в стали с пониженным содержанием S и С не выявлено. В небольшой части изломов образцов стали с пониженным содержанием S и С и почти во всех изломах образцов стали с повышенным содержанием S и С наблюдали расщепления. Установлено, что в отличие от сталей класса прочности X80 расщепления в термоулучшенных низкоуглеродистых низколегированных сталях с низким содержанием серы образуются по механизму зернограничного разрушения. Расщепления возникали в пределах бейнитных полос вдоль границ бейнитных пакетов при совпадении позиций максимальных нормальных напряжений и области осевой сегрегации. Очагами зернограничных расщеплений образцов стали с повышенным содержанием S и С, как правило, служили включения MnS, а в образцах стали с пониженным содержанием S и С влияние MnS на возникновение зернограничных расщеплений не обнаружено.
Изучены электрофизические свойства, прочность и структура образцов керамического материала, соответствующего по составу промышленно производимой керамике марки ВК94-1. Керамические образцы получены с использованием нового технологического подхода, включающего распылительную сушку высококонцентрированной водной суспензии, содержащей минеральную порошковую смесь состава ВК94-1, формование полученного гранулята при сочетании одноосного полусухого прессования и холодного изостатического прессования, а также последующее спекание заготовок на воздухе. Высокие показатели исследуемых свойств достигаются благодаря высокой реологии гранулята, обеспечивающей повышенную плотность как сырых заготовок, так и спеченного материала с мелкокристаллической структурой. Достигнуты следующие свойства материала, превышающие соответствующие характеристики промышленной керамики ВК94-1: относительная плотность 98.7%, прочность при изгибе 380–420 МПа, размер кристаллов в структуре спеченного материала 1–5 мкм, диэлектрическая проницаемость 97, тангенс угла диэлектрических потерь 3.4×10–4, удельное объемное сопротивление 5.3×1014 Ом см. Разработанная керамика может быть рекомендована для использования в качестве диэлектрических деталей специального назначения.
Индексирование
Scopus
Crossref
Высшая аттестационная комиссия
При Министерстве образования и науки Российской Федерации