Синтезированы образцы стеклокерамики методом пропитки спрессованного алюмоиттрий-эрбиевого граната расплавом стекла 20Bi2O3–65B2O3–15BaO. Серия образцов, полученная при различных температурах от 700 до 1500°С, охарактеризована методами рентгенофазового анализа, дифференциальной сканирующей калориметрии, а также проведено измерение плотности в зависимости от температуры синтеза. Выявлены условия химического и фазового формирования боратов Y, Er и их последующего ресинтеза в структуру Er:YAG.
Известные вычислительные реализации экстремального принципа химической термодинамики, используемые для анализа равновесной плазмы [1], распространены на описание стационарно-неравновесных состояний низкотемпературной плазмы (НТП) на основе физической модели энергетической избыточности частично независимых подсистем (электронной и колебательной) с температурами Тe и Тv относительно Т. На статистическом уровне введены “многотемпературные” функции компонентов НТП, которые в рамках метода минимизации энергии Гиббса позволяют прогнозировать условия образования конденсированных веществ (материалов) из НТП. Результаты моделирования состава поддерживаемой СВЧ-излучением гиротрона неизотермической плазмы в смеси CO2 + Ar с использованием экспериментально найденной электронной температуры Тe = 0.7 эВ = 8120 К подтверждают достигнутую на практике 30%-ную степень конверсии CO2 при Т = 1900 К, что на 700 К снижает температуру разложения CO2 в сравнении с расчетом термической плазмы. Проверено совпадение рассчитанного состава плазмы с экспериментом, выявлено влияние плазмообразующего газа Ar на характеристики плазмы и условия разложения CO2, а также предсказано отсутствие конденсированного углерода в продуктах его разложения.
Получены образцы особо чистых стекол Ga15Ge10Te75–xIx(x = 0–6 ат. %) с содержанием 31 примесного элемента не более 0.2 ppm. Установлено влияние йода на характеристические температуры, кристаллизационную устойчивость, термическое расширение и плотность стекол. Полученные результаты интерпретированы в рамках структурно-связевого подхода. Разработана методика обработки данных динамической дилатометрии для определения температурной зависимости теплового коэффициента линейного расширения (ТКЛР). Определена температурная зависимость ТКЛР стекол Ga15Ge10Te75–xIx в интервале от 293 до 412 К.
Разработан способ получения аморфного ультрадисперсного прекурсора (шихты) с различным соотношением Er:YAG и 20Bi2O3–60B2O3–20BaO. Методом селективного лазерного спекания показана возможность формирования функциональной стеклокерамики с кристаллической фазой, представленной иттрий-эрбий-алюминиевым гранатом и боратом иттрия-эрбия, из синтезированного прекурсора. Методами ДСК и РФА проведен анализ химических и фазовых превращений в процессах термической обработки прекурсора, методом АЭС-ИСП исследовано изменение макросостава стеклокерамики при характерных температурах синтеза. Показано, что используемый ультрадисперсный прекурсор перспективен для получения оптических интегральных схем по технологии селективного лазерного спекания.
Индексирование
Scopus
Crossref
Высшая аттестационная комиссия
При Министерстве образования и науки Российской Федерации