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Дилатометрическим методом проведены исследования теплового расширения наноструктуриро-
ванных термоэлектрических материалов (ТЭМ), полученных искровым плазменным спеканием 
нанодисперсного порошка из синтезированных PbTe (0.3 мас.% PbI2 и 0.3 мас.% Ni) n-типа и GeTe 
(7.2 мас.% Bi) p-типа. Плотность полученных ТЭМ составила 97–98% от плотности синтезирован-
ных материалов. Установлено, что термический коэффициент линейного расширения (ТКЛР) PbTe 
с ростом температуры увеличивается с 20.14 × 10–6 К–1 при 550 К до 23.07 × 10–6 К–1 при 900 К. 
ТКЛР GeTe с ростом температуры падает от 13.94 × 10–6 К–1 при 550 К до 11.93 × 10–6 К–1 при 675 К,  
затем растет до 24.47 × 10–6 К–1 при 900 К. Проведено сравнение ТКЛР наноструктурированных 
материалов и материалов, полученных традиционными методами. При температурах от 300 до 750 К 
значения ТКЛР PbTe и GeTe различаются на 15–40%, что может приводить к разрушению термо
элементов. 
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ВВЕДЕНИЕ

В настоящее время представляют большой ин-
терес и  активно разрабатываются как альтерна-
тивные источники энергии термоэлектрические 
генераторы  (ТЭГ)  [1, 2]. ТЭГ непосредственно 
преобразуют тепловую энергию в  электриче-
скую и могут использовать самые разнообразные 
источники тепла, в частности, бесполезно теряе-
мое “бросовое тепло”, доля которого превыша-
ет 60% от вырабатываемой в мире энергии. Как 
правило, температура источников “бросового 
тепла” находится в диапазоне 500–800 К [3]. Для 
практического использования таких источни-
ков тепла наиболее применимы среднетемпера-
турные термоэлектрические материалы  (ТЭМ) 
с рабочим диапазоном 450–900 К на основе PbTe 
и  GeTe. Однако низкая термоэлектрическая до-
бротность  (ZT) ТЭМ ограничивает их  исполь-
зование специальными областями применения, 
когда важны надежность и высокий ресурс рабо-
ты устройства. 

Одним из  перспективных направлений по-
вышения эффективности  ТЭМ, активно разви-
ваемых в  настоящее время, является разработ-
ка наноструктурированных  ТЭМ, в  том числе 
на основе PbTe и GeTe [1, 4, 5]. Ранее нами было 
показано  [6], что максимальная эффектив-
ность наноструктурированного PbTe (0.3  мас.% 
PbI2 и  0.3  мас.% Ni) наблюдается в  интервале 
600–900 К, (ZT)max = 1.34 при 860 К. Нанострук-
турированный GeTe (7.2 мас.% Bi) также имеет 
высокие значения  ZT в  интервале температур 
600–900 К, (ZT)max = 1.43 при 830 К. Полученные 
значения ZT на 13–17% выше величины этого па-
раметра для ТЭМ, сформированных традицион-
ным методом горячего прессования. 

ТЭГ длительное время работают в  критиче-
ских условиях эксплуатации при  многократном 
термоциклировании и наличии больших темпе-
ратурных градиентов (ΔТ) [1, 6]. Высокие значе-
ния  ΔТ приводят к  возникновению существен-
ных термических напряжений, которые могут 
привести к разрушению ТЭГ [1, 6]. Термические 
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напряжения возникают из-за теплового расши-
рения ветвей термоэлементов  (ТЭ) и  разницы 
термических коэффициентов линейного расши-
рения (ТКЛР) ТЭМ, из которых изготавливают-
ся ветви n- и p-типов ТЭ, а также ТКЛР комму-
тационных шин [7]. С повышением температуры 
происходит разное увеличение длины ветвей 
n- и p-типов ТЭ и разрушение спая ТЭ, образо-
ванного коммутационной шиной  [2]. В  таких 
условиях для практического применения важны 
не только высокие и стабильные термоэлектри-
ческие характеристики материалов, но и их ме-
ханическая прочность. Однако в настоящее время 
отсутствуют полностью и  однозначно охаракте-
ризованные температурные зависимости ТКЛР 
для среднетемпературных как классических, так 
и  наноструктурированных ТЭМ, необходимые 
для конструирования ТЭ.

Авторы  [2, 8–14] исследовали ТКЛР средне
температурных материалов PbTe и  GeTe, полу
ченных различными способами. В  рабо-
тах  [2, 8–10] получены значения ТКЛР для 
PbTe при  комнатной температуре в  диапазоне 
от 18.1 × 10–6 до 21.7 × 10–6 K–1. При этом введе-
ние в  состав дополнительных элементов может 
приводить к  сильному изменению этого пара-
метра и его температурной зависимости. Напри-
мер, в работе [9] показано, что увеличение содер-
жания Cd в Pb1–xCdxTe (x изменялось от 0 до 0.08) 
привело к существенному увеличению ТКЛР — 
от  20.05 × 10–6 до  40.05 × 10–6 К–1. При  этом 
с  увеличением температуры в  диапазоне от  373 
до  673 К  ТКЛР нелегированного PbTe не  изме-
няется, а  легированного Pb1–xCdxTe существен-
но уменьшается до 29.19 × 10–6 К–1 при x = 0.08. 
Полученные результаты для Pb1–xCdxTe, одна-
ко, заметно отличаются от  данных работы  [15], 
в которой для Pb0.884Cd0.116Te получено значение 
ТКЛР  20.7(8)  ×  10–6 K–1 при  комнатной темпе
ратуре. 

Для GeTe вблизи ~700 К  наблюдается фазо-
вый переход из  ромбоэдрической в  кубическую 
структуру [5], что приводит к резкому изменению 
многих свойств материала, в  том числе ТКЛР. 
Авторы [16, 17] указывают на влияние легирова-
ния GeTe на температурную зависимость ТКЛР. 
Кроме того, методы получения также влияют 
на тепловое расширение материала. В работе [18] 
показано, что для состава Ge0.9Sb0.1TeB0.01 фазо-
вый переход смещен ближе к температуре 600 К, 
в  то  время как у  GeTe фазовый переход наблю-
дается около 700 К  [11], что влияет и  на  ТКЛР. 
В работе [12] для чистого GeTe, полученного ме-
тодом искрового плазменного спекания (ИПС), 
отмечается резкое изменение ТКЛР вблизи 
фазового перехода (~673 К), что может приве-
сти к  образованию трещин и  даже разрушению 

ТЭМ. В то же время введение Pb, Sb и Ga при-
водит к сглаживанию температурной зависимо-
сти ТКЛР, что обусловлено уменьшением струк-
турного рассогласования при фазовом переходе. 
В  работе предлагается использование состава 
Ge0.78Ga0.01Pb0.1Sb0.07Te как более пригодного для 
практического применения. 

Целью данной работы было исследование 
температурных зависимостей ТКЛР среднетем-
пературных наноструктурированных ТЭМ на ос-
нове PbTe и GeTe.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Наноструктурированные ТЭМ получали мето-
дом ИПС нанодисперсных порошков (SPS-511S,  
Syntex, Япония) из  предварительно синтези-
рованных PbTe (0.3 мас.% PbI2 и  0.3 мас.% Ni)  
n-типа и GeTe (7.2 мас.% Bi) p-типа с использова-
нием разработанной технологии [4]. 

Для определения плотности наноструктури-
рованных  ТЭМ использовался метод гидроста-
тического взвешивания, основанный на  законе 
Архимеда. Расчет плотности проводили с погреш-
ностью не более 0.01 г/см3, использовали среднее 
значение, определяемое после 3 измерений. 

Измерение микротвердости по Виккерсу [19] 
проводили с  использованием микротвердомера 
ПМТ-3М (АО “ЛОМО”, Россия) по  восстанов-
ленному отпечатку от индентора. При измерении 
микротвердости в исследуемый образец вдавли-
вается индентор (алмазная пирамида с  углом 
при вершине 136°) при заданных нагрузке и вре-
мени выдержки и измеряется диагональ отпечат-
ка в  материале. Время выдержки под нагрузкой 
составляло 15 с, измерение диагоналей отпечат-
ков осуществлялось не менее 4 раз и рассчиты-
валось среднее арифметическое от  полученных 
значений: 
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где Р — нормальная нагрузка, приложенная к ал-
мазному наконечнику (Н); d — диагональ (мкм). 
Статистическая погрешность измерения микро-
твердости не превышала 4%.

Анализ структуры и  фазового состава  ТЭМ 
проводили методом дифракции рентгеновских 
лучей с  помощью дифрактометра  D8 (Bruker, 
США), оснащенного позиционно-чувствитель
ным детектором LYNXEYE. Использовалось 
монохроматизированное CuКa-излучение (λ  = 
= 0.154 нм). Фазовый состав определяли путем со-
поставления экспериментальных межплоскост-
ных расстояний со  стандартными значениями  
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для различных веществ, приведенных в  базе 
данных ICDD с  помощью программы Bruker 
Search-Match, входящей в  состав программного 
обеспечения установки. Размеры структурных 
элементов наноструктурированных ТЭМ оцени-
вали по размерам областей когерентного рассея
ния  (ОКР), которые определяли по  уширению 
дифракционных максимумов. Оценку ушире-
ния дифракционных максимумов проводили 
по дифрактограмме, снятой в симметричной схе-
ме, путем сравнения уширения линий первого 
и второго порядков (HKL и 2H2K2L) с профилем 
эталонного материала. В  качестве эталона ис-
пользовали стандартный порошковый образец 
LaB6. Расчет проводился с помощью программы 
Outset. Исследование структуры ТЭМ проводили 
с помощью сканирующей (СЭМ) и просвечива-
ющей электронной микроскопии (ПЭМ) на ми-
кроскопах JSM-6480LV и  JEM  2100 соответст
венно. 

ТКЛР наноструктурированных ТЭМ при тем-
пературах от  комнатной до  900 К  исследовали 
на  высокоточном горизонтальном дилатометре 
L75 PT (Linseis, Германия). Нагрев образца осу-
ществлялся резистивным нагревателем. Точность 
измерения относительного удлинения составля-
ла 0.002% при  общей погрешности измерений, 
не  превышающей 1%. Экспериментальные ре-
зультаты, полученные при  исследовании ТКЛР, 
представлялись в виде зависимостей относитель-
ного удлинения (∆l/l0) и среднего значения ТКЛР 
(α) от температуры. Графики ( ) ( )∆l l f T0 = стро-
ятся по экспериментальным данным: ∆l l lT= − 0,  
где lT — длина образца при конечной температу-
ре  T, l0  — длина образца при  начальной темпе-
ратуре T0. Среднее значение ТКЛР определяется 
по формуле
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(2)

Вычисленное таким образом среднее значе-
ние относится к конечной температуре интерва-
ла (T).

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

На рис. 1 приведены дифрактограммы нано-
структурированных образцов PbTe и  GeTe. Все 
исследованные образцы являются однофазными. 
На  дифрактограммах присутствуют только мак-
симумы, принадлежащие фазам PbTe (Fm-3m)  
и GeTe (R3m). Параметр решетки PbTe составил 
6.462 Å. Для GeTe параметры решетки равны a = 
= 4.195 Å, c = 10.578 Å. Средний размер ОКР для 
образцов PbTe и GeTe составил ~110 и 85 нм соот-
ветственно. Средний размер зерен в нанострук-
турированных образцах PbTe и  GeTe составил 
порядка 100–300 нм (рис. 2). 

Внутри зерен наблюдаются как хаотически 
расположенные дислокации, так и  дислокации, 
образующие субзеренные границы. В  образцах 
GeTe наблюдали двойники. Двойниковые пла-
стины достаточно крупные, ~100–150 нм. 

Исследования с  помощью метода гидроста-
тического взвешивания показали, что плот-
ность наноструктурированных  ТЭМ составляет 
97–98% от плотности ТЭМ, полученных прямым 
сплавлением компонентов. 

Результаты измерения микротвердости нано-
структурированных  ТЭМ представлены в  табл.  1. 

Рис. 1. Дифрактограммы наноструктурированных образцов PbTe (а), GeTe (б).
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Установлено, что микротвердость по  Виккер-
су  (HV) выше у  наноструктурированных ТЭМ 
по  сравнению с  классическими. Этот результат 
согласуется с  законом Холла–Петча, соглас-
но которому наноструктурирование приводит 
к увеличению механической прочности матери-
алов  [21]. При  этом заметно более низкую ме-
ханическую прочность имеют  ТЭМ на  основе 
PbTe, что затрудняет их механическую обработку 
при получении ветвей ТЭ.

Рис.  2. Микрофотографии образцов PbTe (а, б) 
и GeTe (в, г) после ИПС, полученные методом СЭМ 
(а, в) и ПЭМ (б, г).

Таблица  1. Микротвердость наноструктурирован-
ных ТЭМ и ТЭМ, полученных горячим прессованием

Материал
HV

горячее  
прессование ИПС

PbTe 51.7 [20] 52.4

GeTe 125.7 [20] 127.8

Температурные зависимости относительно-
го удлинения и  ТКЛР представлены на  рис.  3. 
ТКЛР PbTe увеличивается во всем интервале тем-
ператур, изменяясь от 18.9 × 10–6 К–1 при 300 К  
до 20.1 × 10–6 К–1 при 550 К и до 24.0 × 10–6 К–1  
при 900 К, что коррелирует с данными [2, 8–10].  
ТКЛР GeTe с  ростом температуры падает 
от  13.6  ×  10–6 К–1 при  550 К  до  11.5  ×  10–6 К–1  
при  675 К.  Резкое падение ТКЛР в  обла-
сти 620–670 К с последующим его увеличением 
выше 670 К связано с изменением структуры это-
го материала из  ромбоэдрической в  кубическую 
типа NaCl. Это явление наблюдали также авто-
ры [11–14]. Выше 670 К ТКЛР резко увеличива-
ется, достигая 24.9 × 10–6 К–1 при 900 К. Необ-
ходимо отметить, что наблюдается существенная 
разница в значениях ТКЛР GeTe в интервале тем-
ператур от 600 до 900 К. ТКЛР наноструктуриро-
ванных материалов близки к ТКЛР материалов, 
полученных классическими методами [22].

Таким образом, при  максимальных рабочих 
температурах ТКЛР PbTe и  GeTe различаются 
несущественно. Однако при температурах от 300 
до 750 К значения ТКЛР PbTe и GeTe различают-
ся до  40%. Это критично при  конструировании 
ТЭ. Для решения этой проблемы целесообраз-
но создание контактных систем в структуре вет-
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Рис. 3. Температурные зависимости Δl/l0 (а) и ТКЛР (б) PbTe (0.3 мас.% PbI2 и 0.3 мас.% Ni) и GeTe (7.2 мас.% Bi).



122 ШТЕРН и др.

НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ     том 61       № 1–2       2025

вей ТЭ, содержащих демпферные слои, компен-
сирующие разность ТКЛР ТЭМ.

ЗАКЛЮЧЕНИЕ

В  настоящее время отсутствуют однозначно 
охарактеризованные значения ТКЛР для  ТЭМ 
с рабочими температурами от 300 до 900 К. Для 
решения этой проблемы проведены исследо-
вания ТКЛР эффективных наноструктуриро-
ванных  ТЭМ на  основе PbTe и  GeTe, которые 
получали методом  ИПС нанодисперсных по-
рошков синтезированных PbTe (0.3  мас.% PbI2 
и  0.3  мас.% Ni) n-типа и  GeTe (7.2  мас.% Bi) 
p-типа. 

Установлено, что ТКЛР PbTe с ростом темпе-
ратуры увеличивается с 20.1 × 10–6 К–1 при 550 К 
до 24.0 × 10–6 К–1 при 900 К. ТКЛР GeTe с ростом 
температуры падает от 13.6 × 10–6 К–1 при 550 К 
до  11.5  ×  10–6 К–1 при  675  К, затем растет 
до 24.9 × 10–6 К–1 при 900 К. Это связано с перехо-
дом структуры из ромбоэдрической в кубическую 
типа NaCl. При температурах от 300 до 750 К зна-
чения ТКЛР PbTe и GeTe различаются на 15–40%, 
что может приводить к разрушению ТЭ. 
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