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Современный этап развития газовой сенсорики характеризуется расширением диапазона приме-
няемых материалов. Для совершенствования характеристик сенсоров, в том числе снижения рабо-
чих температур, проводятся исследования возможностей применения дихалькогенидов переходных 
металлов. В данной работе гидротермальным синтезом получены газочувствительные слои MoS2. 
Проведены их исследования методами растровой электронной микроскопии и рентгеновской фо-
тоэлектронной спектроскопии. Взаимодействие синтезированных слоев с парами изопропилового 
спирта при комнатной температуре проанализировано с помощью спектроскопии импеданса. По-
казаны возможности их применения для детектирования восстанавливающих газов при комнатной 
температуре. 
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ВВЕДЕНИЕ

В  настоящее время развитие газовой сенсо-
рики происходит в  направлении применения 
современных разработок в области материалове-
дения. Помимо традиционно используемых ок-
сидов металлов, проводятся исследования газо-
чувствительных свойств новых материалов. Эти 
разработки направлены в первую очередь на ре-
шение главных проблем адсорбционных полу-
проводниковых сенсоров на основе оксидов ме-
таллов (ZnO [1, 2], SnO2 [3, 4], TiO2 [5], In2O3 [6] 
и  др.), связанных с  высокими рабочими темпе-
ратурами  [7] и  отсутствием селективности  [8]. 
В частности, была продемонстрирована способ-
ность такого двумерного материала, как графен, 
изменять свои электрофизические характери-
стики при взаимодействии с различными газами 
(NO2, NH3, CO и H2O) [9], а также показана воз-
можность обнаружения сверхнизких концент

раций газов при  комнатной температуре  [10]. 
Эти открытия побудили ученых вести дальней-
шие исследования, направленные на  улучше-
ние характеристик газовых сенсоров на  основе 
2D-материалов  [11, 12]. Благодаря таким харак-
теристикам, как высокое соотношение поверх-
ности к объему, высокая адсорбционная способ-
ность, уникальные электрические свойства [13], 
зависящие от толщины структуры, MoS2 являет-
ся одним из  наиболее перспективных слоистых 
материалов для создания на  его основе газовых 
сенсоров [14]. 

Синтез MoS2 возможен с  использованием 
разнообразных технологий изготовления  [15], 
таких как механическое или жидкостное от-
слаивание, физическое или химическое осаж-
дение из  газовой фазы, синтез из  растворов 
и т.д. В частности, известно, что частицы MoS2 
различной формы, включая нанотрубки, сфе-
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рические и  иерархические структуры, могут 
быть синтезированы в  гидротермальных ус-
ловиях при  вариации технологических режи-
мов [16, 17]. 

Принцип работы полупроводниковых газо-
вых сенсоров основан на  адсорбции молеку-
лы-мишени на  поверхности газочувствитель-
ного слоя с  последующим их  взаимодействием, 
вследствие чего происходит изменение электри-
ческого сопротивления материала [18]. Поэтому 
чувствительные свойства полупроводниковых 
газовых сенсоров в  значительной степени зави-
сят от их структуры и состава, а для MoS2 — в том 
числе и от количества слоев. 

Все существующие на  сегодняшний день га-
зовые сенсоры на  основе MoS2 способны реги-
стрировать ограниченное количество типов га-
зов (в  основном оксиды азота  [19], аммиак  [20] 
и триэтиламин [21]). К тому же они могут рабо-
тать только в  инертной атмосфере (например, 
N2)  [22]. Для улучшения чувствительности, се-
лективности, стабильности и  быстродействия 
газовых сенсоров на основе MoS2 применяются 
различные методы его модификации наночасти-
цами благородных металлов или оксидов метал-
лов, такие как изменение морфологии соеди-
нения, геометрии или структуры поверхности, 
создание нанокомпозитов и ван-дер-ваальсовых 
гетероструктур. Существование многообразия 
морфологических форм дисульфида молибдена 
приводит к различному количеству реакционно-
способных центров.

Помимо традиционного измерения сопро-
тивления на  постоянном токе, для измерения 
отклика газовых сенсоров может быть использо-
вана спектроскопия импеданса [23–26]. В рабо-
те  [27] спектроскопия импеданса была исполь-
зована в  качестве газочувствительного сигнала 
при  детектировании H2S сенсором на  основе 
ZnO, инкорпорированного восстановленным 
оксидом графена. Также этот метод был приме-
нен при разработке сенсоров водорода на основе 
слоев ZnO  [28] и  сенсоров органических паров 
на основе слоев полититанатов калия [29]. Этот 
метод позволяет исследовать физические и  хи-
мические процессы, влияющие на  электриче-
ские характеристики полупроводниковых газо-
вых сенсоров. 

Целью работы являлось исследование возмож-
ности использования сенсорных слоев MoS2, по-
лученных гидротермальным методом, в качестве 
газовых сенсоров, работающих при  комнатной 
температуре, с  использованием вещественной 
и  мнимой составляющих импеданса в  качестве 
газоаналитического отклика.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Газочувствительные слои на основе иерархи-
ческих наноструктур MoS2 были синтезированы 
с помощью низкотемпературного гидротермаль-
ного метода. В  качестве исходных компонентов 
использовались водные растворы молибдата 
натрия Na2MoO4·2H2O, тиомочевины SC(NH2)2 
и  щавелевой кислоты C2H2O4·2H2O. Затем 
их смешивали в объемном соотношении 1 : 2 : 1. 
Готовый раствор помещали в автоклав из нержа-
веющей стали с  расположенной на  дне сенсор-
ной платформой и нагревали в печи. Синтез про-
водили при температуре 200°C в течение 14 ч.

Методом растровой электронной микроско-
пии (РЭМ) были проведены исследования мор-
фологии поверхности синтезированных иерар-
хических структур MoS2. Для анализа образцов 
использовался микроскоп Zeiss Supra 25 (Zeiss, 
Германия).

Состав поверхности полученных образцов был 
проанализирован методом рентгеновской фото-
электронной спектроскопии  (РФЭС). Измере-
ния проходили с  помощью рентгеновского фо-
тоэлектронного спектрометра K-Alpha (Thermo 
Scientific, США), в  экспериментах использова-
лось монохроматическое излучение AlKα с энер-
гией 1486 эВ. Обзорные спектры были получены 
в диапазоне энергий связи от 0 до 1350 эВ. Также 
были получены спектры остовных уровней от-
дельных элементов. Анализ спектров был про-
веден с  помощью программного обеспечения 
OriginLab. Так как на поверхности элементы на-
ходятся в связанных состояниях, была проведена 
деконволюция спектра на несколько составляю-
щих, описываемых функцией Гаусса. 

Газочувствительные свойства образцов были 
изучены при  комнатной температуре под воз-
действием паров изопропилового спирта с кон-
центрацией 1000  ppm. С  помощью прижимных 
контактов образец фиксировался внутри каме-
ры, в которую подавалась определенная концен-
трация необходимого газа. Спектры импедан-
са измерялись при  воздействии газа-реагента 
и в воздушной среде с помощью измерителя им-
педанса Z-500P (Элинс, Россия) в диапазоне ча-
стот от 1 Гц до 500 кГц. 

При  измерении спектров импеданса отклик 
для каждой частоты определялся с  использова-
нием действительной части импеданса в виде: 

S Z ZRe в г
Re Re= ( ) ( ) ,

где Re(𝑍)в  — действительная часть импеданса 
в  атмосфере воздуха, Re(𝑍)г  — действительная 
часть импеданса в присутствии целевого газа. 
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Аналогично, отклик с  использованием мни-
мой части импеданса был рассчитан как: 

S Z ZIm в гIm Im= ( ) ( ) ,

где Im(𝑍)в  — мнимая часть импеданса в  атмос-
фере воздуха, Im(𝑍)г — мнимая часть импеданса 
в присутствии целевого газа.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Анализ морфологии поверхности образцов 
показал, что наночастицы MoS2 представля-
ют собой иерархические структуры, cостоящие 
из нанолистов, внешне похожие на цветы (рис. 1). 
Толщина листов составляет порядка 10 нм, а раз-
мер частиц — порядка 600 нм. 

Обзорный РФЭС свидетельствует о  том, что 
на поверхности присутствуют следующие хими-
ческие элементы: Mo, S, O, C (рис. 2). Более того, 
он доказывает, что молибден и сера присутствуют 
в  составе MoS2, наличие кислорода свидетель-

100 нм

Рис. 1. РЭМ-изображение MoS2.
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Рис. 2. РФЭ-спектр MoS2.
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Рис. 3. Энергетический спектр линии Mo3d (синий), 
разложенный на модельные гауссианы (зеленый).
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Рис.  4. Энергетический спектр линии S2p (синий), 
разложенный на модельные гауссианы (зеленый).

ствует о том, что поверхности образцов частич-
но окислены, а  наличие углерода  — о  том, что 
происходит адсорбция углеродсодержащих мо-
лекул из  атмосферы. При  более детальном рас-
смотрении спектра линии Мо3d (рис. 3) и разло-
жении ее на составляющие видно, что в составе 
исследуемых образцов присутствует молибден 
со степенью окисления 4+ (Mo3d5/2 при 228.8 эВ, 
Mo3d3/2 при  232.4  эВ), положения пиков кото-
рого соответствуют данным [30] для соединения 
MoS2. Также наблюдается наличие молибдена 
со степенью окисления 6+ (Mo3d5/2 при 232.4 эВ, 
Mo3d3/2 при  235.8  эВ), что говорит о  том, что 
на  поверхности образцов присутствует оксид 
молибдена MoO3  [31]. Из-за перекрытия диа-
пазонов энергий связи Мо3d и серы на спектре 
также наблюдается пик с энергией связи 229 эВ, 
который соответствует уровню серы S2s. При ис-
следовании спектра линии серы S2p (рис. 4) были 
обнаружены два пика: S2p3/2 c энергией связи 
161.6 эВ и S2p1/2 c энергией связи 162.7 эВ. Также 
на нем присутствует пик с энергией 168.9 эВ, ука-
зывающий на явление возбуждения поверхност-
ных плазмонов.

Анализ спектра линии кислорода O1s (рис. 5) 
показал наличие трех составляющих: пик, мак-
симум которого приходится на  более низкую 
энергию связи (530.4  эВ), соответствует кисло-
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роду кристаллической решетки в  соединении 
MoO3, второй пик  — адсорбированному кис-
лороду в  виде ОН-групп (531.5  эВ), а  третий  — 
слабосвязанному кислороду, адсорбированно-
му на поверхности в виде карбоксильных групп 
(532.8 эВ) [32]. При этом содержание кислорода, 
входящего в состав поверхностных гидроксиль-
ных групп, составляет 52%, а кислорода карбок-
сильных групп — 31%. Доля кислорода кристал-
лической решетки незначительна (17%).

Был исследован отклик дисульфида молиб-
дена к парам изопропилового спирта при ком-
натной температуре (рис.  6). Взаимодействие 
MoS2 с  этим газом приводит к  значительным 
изменениям действительной (рис. 7) и мнимой 
(рис. 8) составляющих комплексного сопротив-
ления. 

На  низких частотах значение отклика, рас-
считанное по  вещественной части импеданса, 
практически не  изменяется (𝑆Re  =  2.8). При  ча-
стоте больше 6  кГц значение 𝑆Re начинает уве-
личиваться и  достигает максимума (𝑆Re  =  3.82) 
при f = 60 кГц, при дальнейшем увеличении ча-
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Рис.  5. Энергетический спектр линии O1s (синий), 
разложенный на модельные гауссианы (зеленый).
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Рис.  6. Диаграммы Найквиста газочувствительного 
слоя MoS2 в атмосфере различного состава.
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Рис. 7. Частотные зависимости действительной ча-
сти импеданса газочувствительного слоя MoS2 в ат-
мосфере различного состава.
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Рис.  8. Частотные зависимости мнимой части им-
педанса газочувствительного слоя MoS2 в атмосфере 
различного состава.

стоты 𝑆Re уменьшается. Отклик, рассчитанный 
по мнимой части, достигает максимального зна-
чения при частоте 278 кГц (𝑆Im = 4.34). Наблюда-
ется рост отклика с увеличением частоты начи-
ная с 0.2 кГц. 

Снижение величины мнимой части импедан-
са может быть объяснено адсорбцией молекул 
изопропанола между слоями частиц дисульфида 
молибдена. Если рассматривать данную систему 
как конденсатор, между электродами которого 
находятся частицы MoS2 и воздух, то замена мо-
лекул кислорода на  молекулы изопропилового 
спирта будет приводить к уменьшению емкости. 
Появление поляризационных эффектов может 
приводить к  сдвигу максимума Im(Z) в  сторону 
низких частот.

Полученные в  результате гидротермально-
го синтеза наночастицы MoS2 (рис. 1) обладают 
широкими возможностями для адсорбции моле-
кул газов благодаря большому количеству цен-
тров адсорбции на поверхности слоев и эффек-
тивному удержанию адсорбированных молекул 
между слоями. 
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По  результатам РФЭС можно сделать вывод 
о  том, что поверхность слоев MoS2 при  нахож-
дении в атмосфере воздуха окисляется. Хорошая 
адсорбционная способность таких частиц под-
тверждается результатами исследования спектра 
O1s, из которого следует высокая степень запол-
нения поверхности гидроксильными и  карбок-
сильными группами. Согласно данным [33–35], 
OH-группы могут являться адсорбционными 
центрами для молекул спиртов. Следовательно, 
вклад в  повышенную способность полученных 
наночастиц MoS2 к адсорбции молекул изопро-
панола вносят их морфология (слоистая структу-
ра с высокой удельной поверхностью) и большое 
содержание адсорбционных центров. 

Анализ литературы показал, что сенсорные 
слои на  основе MoS2 при  комнатной темпера-
туре чаще всего используются для детектирова-
ния NO2 (окисляющий газ), при этом величины 
отклика достигают, например, 48% к 50 ppm [36] 
и  42% к  200  ppm NO2  [37]. Для детектирования 
восстанавливающих газов сенсоры на  осно-
ве MoS2 работают при  нагревании. Например, 
при 130°С был достигнут отклик 86.9% к 100 ppm 
формальдегида  [38], а  в  качестве газочувстви-
тельного слоя были использованы слоистые на-
ноструктуры MoS2, полученные сольвотермаль-
ным методом. Отклик к  восстанавливающим 
газам при  комнатной температуре может быть 
достигнут при  использовании композитных га-
зочувствительных слоев, например гетеропе-
реходов MoS2/CuO, демонстрирующих отклик 
к  100  ppm аммиака, равный 47%  [39]. Однако 
при  этом усложняется технология получения 
сенсорных слоев. В данной работе детектирова-
ние восстанавливающих газов при  комнатной 
температуре проводили с  измерением отклика 
при переменном напряжении.

ЗАКЛЮЧЕНИЕ

В  работе гидротермальным методом получе-
ны газочувствительные слои на  основе иерар-
хических структур MoS2. С  помощью спектро-
скопии импеданса продемонстрировано, что 
электрофизические свойства синтезированных 
слоев изменяются при  взаимодействии с  пара-
ми изопропилового спирта. При этом происхо-
дит уменьшение вещественной и  мнимой со-
ставляющих импеданса, зависящее от  частоты. 
Максимально достигнутые значения отклика 
составляют 3.82 (вещественная составляющая 
импеданса) и 4.34 (мнимая составляющая импе-
данса). 
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