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Плавлением в  холодном тигле индукционного нагрева получен образец, состоящий из  фазы 
Nd4(Ti,Zr)9O24 и  рутила (Ti,Zr)O2. При  облучении электронами с  энергией 4.5−5 МэВ до  дозы 
5 × 109 Гр не зафиксировано изменение фазового состава и параметров кристаллической решетки 
основных фаз. После облучения дозой ≥109 Гр скорость выщелачивания Nd3+ увеличивается в не-
сколько раз по сравнению с аналогичными периодами выщелачивания при одинаковых условиях 
гидролитических испытаний.
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ВВЕДЕНИЕ

Переход к  ядерной энергетике на  тепловых 
и быстрых реакторах и с переработкой облучен-
ного ядерного топлива (ОЯТ) позволит исполь-
зовать весь энергетический потенциал урана, 
но  это приведет к  образованию существенных 
количеств отходов, которые должны быть на-
дежно изолированы от биосферы на весь период 
их  опасности. В  случае трансурановых актини-
дов такой срок составляет миллионы лет. По-
иск способов обращения с  высокоактивными 
отходами  (ВАО) от  переработки ОЯТ ведется 
в разных странах [1–6]. Для решения проблемы 
необходимо их включение в особые устойчивые 
материалы (матрицы) и  размещение в  глубоких 
подземных хранилищах. Проводившиеся иссле-
дования привели к внедрению сначала во Фран-
ции, затем в  других странах (США, Бельгии, 
Германии, Великобритании, Японии, Индии) 

технологии отверждения ВАО в боросиликатные 
стекла [4–8]. В России для этой цели использу-
ется алюмофосфатный композит  [9, 10]. Коли-
чество остеклованных  ВАО в  мире оценивается 
в 30–35 тыс. т, включая почти 8 тыс. т алюмофос-
фатного стекла.

С  1970‑х годов изучаются кристаллические 
и  стеклокристаллические матрицы для  ВАО 
в целом [11–14], а также для отдельных фракций 
нуклидов с  близкими свойствами (Cs-Sr, акти-
ниды, РЗЭ-актиниды) [15–18], отдельных элемен
тов (Pu) [19, 20] и даже изотопов (99Tc, 129I) [21, 22].  
Основные фазы, концентрирующие в своем со-
ставе радионуклиды, имеют природные аналоги 
структурных типов, а их синтетические аналоги 
(матрицы) называются минералоподобными. 
Из-за изоморфизма структуры природных со
единений (минералов) и геологической стабиль-
ности структурные типы минералов рассматри-
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ваются в  качестве основы для долговременной 
фиксации радионуклидов. Ключевая проблема 
завершающей стадии ядерного топливного цик-
ла  — безопасное обращение с  долгоживущими 
актинидами. В  основе подходов к  ее  решению 
наряду с возможным их дожиганием в реакторах 
лежат приемы разделения (фракционирования) 
ВАО [23–25], разработка емких матриц актини-
дов [26–28] и способов их промышленного полу-
чения [28–32].

ТЕОРЕТИЧЕСКИЙ АНАЛИЗ

Вместе с  минорными актинидами  (МА) мо-
гут быть химически выделены редкоземельные 
элементы. Высокое содержание  РЗЭ и  МА ха-
рактерно для минералоподобных фаз со  струк-
турами пирохлора, цирконолита, монацита, 
бритолита  [33, 34]. Исследования матриц начи-
наются с  изготовления образцов с  имитатора-
ми радионуклидов (с  использованием стабиль-
ных изотопов одного и  того  же элемента или 
химических аналогов). Это упрощает их  син-
тез и  изучение основных физико-химических 
характеристик [2, 28]. Однако распад радиоизо-
топов способен вызвать различные повреждения 
в структуре материалов (табл. 1), которые могут 
привести к изменению их свойств, например из-
менить гидролитическую устойчивость. 

Синтез матриц с  актинидами трудоемок 
и сложен в силу необходимости защиты от ради-
ации, дороговизны радиоизотопов (Pu, Am, Cm), 
поэтому для изучения радиационных поврежде-
ний используются различные имитационные 
приемы: облучение нейтральными или заряжен-
ными частицами, в том числе электронами. Они 
позволяют за  короткое время достичь высоких 
доз облучения, сравнимых с теми, что реальная 
матрица накопит за многие тысячи лет хранения. 
Облученный образец не становится радиоактив-
ным, что упрощает исследование его свойств. 
Значения доз аморфизации в  имитационных 
экспериментах в  единицах смещений на  атом 
оказались близки к  данным опытов с  коротко-
живущими актинидами [35–37].

При  выборе матриц важно наличие техно-
логии их  изготовления. Из-за ее  отсутствия 
не нашла применения для иммобилизации ВАО 
предложенная в  1970‑х годах полифазная кера-
мика Синрок [11, 38, 39], а также концептуально 
близкий суперкальцинат [3]. Лишь спустя 50 лет 
технологически сложный прием горячего прес-
сования, разработанный для Синрок, готовится 
к практической реализации для среднеактивных 
отходов [29, 30].

В  лабораторных условиях керамические ма-
трицы получают спеканием (включая горячее 
прессование с  одновременным спеканием) или 
плавлением–кристаллизацией. Спекание высо-
коактивных материалов применяется при  изго-
товлении ядерного топлива с  трансурановыми 
актинидами (Pu, Np, Am), этот метод предлагал-
ся для изготовления пирохлоровых матриц ору-
жейного Pu  [29]. Из-за высокой температуры 
плавления керамических матриц (1400–2200°С) 
применение плавителей джоулева нагрева энер-
гозатратно для их получения. Для синтеза таких 
фаз более предпочтителен метод индукционного 
плавления в  холодном тигле  (ИПХТ), который 
с 2010 года применяется во Франции для остек
ловывания жидких  ВАО процесса PUREX  [4]. 
В  последние 10  лет метод используется в  США 
для синтеза керамик и  стеклокерамик с  РЗЭ-
имитаторами ВАО  [40–42]. В  России возмож-
ности ИПХТ для синтеза матриц около 40  лет 
исследуются в  организациях контура Госкорпо-
рации Росатома (АО ВНИИНМ, АО ВНИИХТ, 
ФГУП РАДОН, ФГУП ПО МАЯК), Российской 
академии наук (ИФХЭ РАН), Санкт-Петербург-
ском государственном электротехническом уни-
верситете  [43–52]. АО ВНИИНМ и  АО Радие-
вый институт им.  В.  Г.  Хлопина разрабатывают 
технологию ИПХТ для остекловывания отхо-
дов  [53]. Большой прогресс в  области практи-
ческого применения ИПХТ для изоляции  ВАО 
в  керамические матрицы достигнут специали-
стами АО ВНИИХТ [54]. 

Аналогом трехвалентных актинидов слу-
жит Nd3+, поэтому система Nd2O3–TiO2–ZrO2 

Таблица 1. Радиационные эффекты в остеклованных ВАО [3, 35]

Тип облучения (распада) Размер дефектов, м Доза облучения, Гр
через 104/106 лет

Число смещений
атомов за 1 распад

α-Частица ~2 × 10−5 3 × 109 / 1010 130–200
Ядро отдачи ~3 × 10−8 ~6 × 107 / ~3 × 109 120–2000
β-Распад ~10−3 ~3 × 109 / ~4 × 109 0.1–1
γ-Распад ~2 × 10−2 ~2 × 109 / ~2 × 109 <<1
Спонтанное деление ~10−5 103–104* / нет данных 2.5 × 104–5 × 105 
Примечание. Единица поглощенной дозы облучения Гр = Дж/кг.
* За первые 100 лет.
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представляет особый интерес для поиска ма
триц фракции РЗЭ-МА. В  ней имеются фазы 
Nd2(Zr,Ti)2O7−x, Nd2TiO5, Nd2Ti2O7, Nd2Ti3O9 
и  Nd4Ti9O24 с  содержанием 48–73  мас.% Nd2O3 
(рис. 1). Ранее исследовались их структура, со-
став, области устойчивости [47–51], поведение 
при  облучении  [52–56], коррозионная устой-
чивость  [15, 16, 55–57], влияние условий син-
теза на  строение образцов  [18, 49, 54, 65, 66]. 
В двух работах исследовались образцы с Np, Pu, 
Cm [67, 68]. 

Титанат неодима с  формулой Nd4Ti9O24 ром-
бической симметрии наиболее интересен в  ка-
честве матрицы по ряду причин: поле его устой-
чивости и содержание примесей (Ca2+, Zr4+, U4+) 
больше, чем у других титанатов Nd; при избытке 
титана образуется дополнительная фаза рутила 
(TiO2), в результате температура плавления ком-
позита снижается на  200–300°С, что облегчает 
синтез. В зависимости от доли рутила в образцах 
содержание Nd2О3 (имитатор актинидов) варьи-
руется от  48  мас.% (100% Nd4Ti9O24) до  0  мас.% 
(0%). Отметим, что у  соединения Nd4Ti9O24, 
в  отличие от  многих других фаз, структурные 
аналоги в  природе отсутствуют. Другим приме-
ром таких матриц служит фосфат-дифосфат Th, 
предложенный для изоляции Pu [69].

В  структуре Nd4Ti9O24 (пр. гр. Fddd, Z  =  16) 
имеются три типа полиэдров с  катионом Nd3+: 
Nd(1)  — искаженная квадратная антипризма, 
Nd(2) — октаэдр, Nd(3) — искаженная квадрат-
ная призма (рис. 2). Полиэдры Nd(1)O8, соединя-
ясь ребрами и вершинами, образуют слои парал-
лельно плоскости (110). Полиэдры Nd(3) связаны 
ребрами со слоями полиэдров Nd(1) в виде пла-
стин толщиной 17.5 Å, в каналах которых распо-
ложены октаэдры Nd(2). 

Цель работы состояла в изучении влияния об-
лучения на строение и свойства керамики с фа-
зой титаната неодима, полученных в ИПХТ.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Для синтеза использовали гранулят, полу-
ченный добавлением имитационного раство-
ра к  смеси оксидов в  тарельчатом комкователе 
при 200°С. Размер гранул менялся от 4 до 12 мм, 
их влажность составляла 20 мас.% (рис. 3). Плав-
ку проводили в медном водоохлаждаемом тигле, 
для стартового нагрева шихты использовали 
графитовое кольцо. Предварительно готовили 
смесь из  оксидов металлов в  пропорциях, со-
ответствующих целевому составу матрицы, для 
получения стартовой ванны расплава, в  кото-
рую небольшими порциями подавали гранулы. 
Выдержка расплава после загрузки всей массы 
гранул составляла 20 мин, максимальная темпе-
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Рис.  1. Возможная диаграмма состояния системы 
NdO1.5–TiO2–ZrO2 при  1450°С  [55]: темные обла-
сти — однофазные поля, заштрихованы двухфазные 
области, трехфазные — 3ф. 

b

c

Рис. 2. Структура Nd4Ti9O24: зеленым помечены по-
лиэдры Ti, коричневым — полиэдры Nd.

Рис.  3. Внешний вид материала, полученного при 
грануляции.
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ратура по показаниям двулучевого пирометра — 
1730°С. После выключения установки и кристал-
лизации расплава получен блок матрицы массой 
1.8 кг и диаметром 80 мм. Для проведения ради-
ационных и  коррозионных испытаний из  этого 
блока готовили образцы высотой 2–3 мм с дли-
ной ребра 15–30  мм (рис.  4). Вырезку образцов 
проводили с использованием прецизионных от-
резного и шлифовально-полировального станков 
Mecatome T210 и  Mecatech 234 (Presi, Франция) 
в форме правильного параллелепипеда.

Облучение проводили в  АО ГНЦ НИИАР  
на  установке ИЛУ-6: диапазон энергий 
4.5−5 МэВ, мощность электронного пучка 20 кВт, 
средний ток пучка 17  мА. Для калибровки при-
меняли пленочные дозиметры СО ПД (Ф)Р-5/50. 
При  мощности облучения (1.1–2.5)  ×  103  Гр/с 
поглощенная образцами доза составила 107, 108, 
5  ×  108, 109 и  5  ×  109  Гр (облучались независи-
мые образцы при  разных дозах), что соответ-
ствует флюенсу электронов 0.3 × 1018, 0.3 × 1019, 
1.4 × 1019, 0.3 × 1020 и 1.4 × 1020 эл./см2 соответ-
ственно. С  учетом того, что электроны плохо 
смещают атомы (табл. 1), для оценки поврежда-
емой дозы и сопоставления экспериментальных 
данных полученные радиационные поврежде-
ния материала рассчитывали в  единицах чис-
ла смещений на атом — произведение флюенса 
электронов на сечение смещения. В отношении 
электронов сечение смещения атомов в материа-
ле из положения равновесия оценивали по фор-
муле [70]:

	 σ πα=
8 2

2
2

2
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M c E
R

d
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где σ  — сечение смещения атома (усредненно) 
из положения равновесия, м2; ER — постоянная 
Ридберга, м−1; М2 — средняя масса атомов в ма
трице, кг; с — скорость света в вакууме; Ed — по-
роговая энергия, необходимая для смещения 
атома (для нашего случая находится в диапазоне 
от 0.41 до 0.68 МэВ — для оценки взято среднее 
значение) [70]; Z — среднее зарядовое число ато-
мов в исследуемом материале; α — коэффициент, 
равный отношению квадрата среднего зарядово-
го числа к  137, для электронов определен в  ра
боте [70].

Нагревания образцов в  ходе облучения 
не  происходило. Их  исследовали рентгенофа-
зовым методом на  рентгеновском дифрактоме-
тре ДРОН-7 в диапазоне углов 2θ от 10° до 100° 
с шагом 0.02° (CuKα-излучение). Для диагности-
ки фаз использовали программу Match! и  базу 
данных COD. Строение образцов до  и  после 
облучения изучали на  сканирующем электрон-
ном микроскопе  (СЭМ) высокого разреше-
ния Phenom  XL G2 компании Thermo Scientific. 
Изображения поверхности получали с  исполь-

Рис. 4. Вид полученных образцов.

зованием детектора обратно-отраженных элек-
тронов (ускоряющее напряжение 5 кВ) с микро-
рентгеноспектральным анализом в  выбранных 
точках поверхности образцов. Химическую ус
тойчивость образцов определяли в бидистилли
рованной воде при 25°С с заменой раствора че-
рез 1, 3, 7, 10, 14, 21 сут. по процедуре, описанной 
в  ГОСТ  52126-2003  [71], общая длительность 
опыта составила 28 сут. Растворы анализировали 
эмиссионно-спектральным методом, погреш-
ность анализа 10–25  отн.%. Скорости выщела-
чивания рассчитывали по формуле: 

	 R =
m

f Si
i

i n⋅ ⋅ τ
	 (2)

где mi — масса элемента i, выщелоченного за дан-
ный интервал времени, г; fi — массовая концен-
трация элемента i  в  исходном образце, г/г; S  — 
площадь открытой геометрической поверхности 
образца, см2; τn  — продолжительность n-го пе
риода выщелачивания, сут.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Валовый состав образца задавали в  расчете 
на  получение композита из  ромбического ти-
таната неодима и  оксида титана (рутила). С  це-
лью повышения коррозионной и радиационной 
устойчивости в  шихту вводили цирконий в  ко-
личестве, не  превышающем его растворимость 
в титанате неодима. Установлено (рис. 5–7), что 
образец состоит из двух фаз — фазы со структу-
рой ромбического титаната Nd4Ti9O24 и  рутила 
TiO2 в соотношении 60 : 40%.

С  помощью СЭМ получены изображения 
образца (рис. 5, 6) и определены его состав в це-
лом в  пересчете на  оксиды (мас.%): 30.0  Nd2O, 
3.5  ZrO2, 66.5  TiO2 и  составы фаз (табл.  2): 
51.1 TiO2, 1.4 ZrO2, 47.5 Nd2O3 (титанат Nd, сред-
нее из  11  анализов); 96.8  TiO2, 3.2  ZrO2 (рутил, 
10  анализов). Из  этих данных были рассчитаны 
их  формулы: Nd3.89Ti8.84Zr0.16O23.84 и  Ti0.98Zr0.02O2 
соответственно.

Содержание Ti, Zr и  Nd в  образце, опреде-
ленное атомно-эмиссионной спектрометрией 
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500 мкм 500 мкм
Рис. 5. СЭМ-изображение центрального участка об-
разца: серый фон — титанат Nd, черный — рутил.

Рис. 6. СЭМ-изображение периферийного участка образца: 
серый фон — титанат Nd, черный — рутил.

с индуктивно-связанной плазмой, соответствует 
данным СЭМ/ЭДС-анализа. Составы образца 
в центре и на периферии блока близки (табл. 3), 
что указывает на его высокую однородность.

По  данным РФА (рис.  7) не  установлено су-
щественного влияния облучения электронами 
до  доз 5  ×  109  Гр на  фазовый состав образцов. 
Отмечаются лишь небольшие вариации параме-
тров и  объема элементарной ячейки обеих фаз 
(табл.  4). Максимальные изменения размеров 
ячейки фазы Nd4Ti9O24 после облучения наблю-
даются для параметра с, но  значения находятся 
в интервале 14.460–14.495 Å, что составляет ме-
нее 0.04 Å, или 0.3 отн.%.

На  СЭМ-снимках облученных образцов 
(рис.  8) светлые области отвечают Nd4Ti9O24, 
темные  — рутилу (TiO2). После облучения об-
разцы сохраняют монолитность, каких-либо из-
менений их структуры, морфологии и строения 
зерен не выявлено.

Скорости выщелачивания Nd, Ti и Zr до и по-
сле облучения за  1–3  сут. выщелачивания су-
щественно не  отличались. Однако значения 
скоростей выщелачивания после облучения до-
зой (1–5) × 109 Гр для больших временны́х интер-
валов (14–28 сут.) возросли на порядок (табл. 5). 

Таблица 2. Составы (мас.%) титаната неодима и рути-
ла в разных участках образца по данным микрорентге-
носпектрального анализа

Точки 
анализа

Титанат Nd Точки 
анализа

Рутил
TiO2 ZrO2 Nd2O3 TiO2 ZrO2

1 51.1 1.3 47.6 1 96.7 3.3

2 51.0 1.4 47.7 2 95.8 4.2

3 51.0 1.6 47.3 3 96.7 3.2

4 51.5 1.2 47.4 4 97.0 3.0

5 51.0 1.4 47.6 5 97.0 3.1

6 51.4 1.3 47.3 6 97.0 3.0

7 51.2 1.4 47.4 7 97.0 3.2

8 51.0 1.3 47.6 8 97.0 3.0

9 51.1 1.6 47.2 9 97.1 2.9

10 51.4 1.2 47.4 10 97.2 2.8

11 50.8 1.9 47.3

Среднее 
(n = 11) 51.1 1.4 47.4

Среднее 
(n = 10)

96.8 3.2

Усред-
ненная 
формула 
фазы

Nd3.89Ti8.84Zr0.16O23.84

Усред-
ненная 
формула 
фазы

Ti0.98Zr0.02O2

Примечание. Погрешность в определении состава в точках 
составляет до 15%.

Таблица 3. Расчетный состав исходного образца и данные микрорентгеноспектрального анализа

Элемент
Содержание, мас.%

расчетный  состав периферия центральная  область периферия 
Nd 25.71 26.9 26.0 26.2
Ti 39.90 36.8 36.0 36.2
Zr 2.59 3.1 3.0 2.9
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Рис. 7. Дифрактограммы образцов после облучения электронами.

Таблица 4. Рентгенографические характеристики фаз до и после облучения образцов

Доза, Гр
Параметры элементарной ячейки, Å Объем ячейки, Å3

Nd4Ti9O24 TiO2 Nd4Ti9O24 TiO2

0
a = 13.984 (6)
b = 35.339 (2)
c = 14.460 (2)

а = 4.602 (2)
c = 2.966 (3) 7146.0 (7) 62.81 (1)

107
a = 13.992 (3)
b = 35.320 (9)
c = 14.485 (2)

а = 4.604 (1)
c = 2.966 (1) 7159.0 (3) 62.88 (1)

108
a = 14.004 (8)
b = 35.252 (2)
c = 14.495 (7)

а = 4.615 (5)
c = 2.974 (5) 7156.0 (0.6) 63.34 (2)

5 × 108
a = 13.997 (4)
b = 35.338 (1)
c = 14.482 (4)

a = 4.588 (3)
c = 2.981 (3) 7163.0 (4) 62.75 (1)

109
a = 13.997 (4)
b = 35.338 (8)
c = 14.483 (3)

а = 4.592 (1)
c = 2.958 (1) 7156.0 (3) 62.15 (3)

5 × 109
a = 13.998 (3)
b = 35.330 (8)
c = 14.478 (3)

a = 4.592 (6)
c = 2.957 (7) 7160.0 (3) 62.34 (2)
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Это свидетельствует о том, что облученный ма-
териал демонстрирует более высокие выходы 
ионов основных компонентов по мере выщела-
чивания и увеличение выхода зависит от погло-
щенной дозы. При этом общая закономерность 
снижения скоростей выщелачивания для Nd 
и Ti по мере выщелачивания сохраняется как для 
облученных, так и для необлученного образцов, 
что характерно и для других типов кристалличе-
ских матриц.

(а) (б) (в) (г)

Рис. 8. СЭМ-изображения исходного образца (а) и по-
сле облучения электронами до доз 107 (б), 5 × 108 (в) 
и 5 × 109 Гр (г): светлый фон — титанат Nd, темный — 
рутил (масштабная метка — 20 мкм).

Таблица 5. Скорость выщелачивания образцов водой до и после облучения электронами

Поглощенная доза, Гр Период, сут. Скорость выщелачивания, г/(см2 сут)
Nd Ti Zr

Исходный образец 
до облучения

1 5.4 × 10−7 1.6 × 10−7 3.6 × 10−7

3 1.3 × 10−7 1.2 × 10−8 1.8 × 10−7

7 3.6 × 10−8 5.8 × 10−9 8.9 × 10−8

10 1.2 × 10−8 7.7 × 10−9 1.2 × 10−7

14 9.0 × 10−9 5.8 × 10−9 8.9 × 10−8

21 5.1 × 10−9 3.3 × 10−9 5.1 × 10−8

28 5.1 × 10−9 3.3 × 10−9 5.1 × 10−8

107

1 1.7 × 10−7 2.5 × 10−6 7.5 × 10−7

3 7.0 × 10−8 4.2 × 10−8 3.5 × 10−7

7 2.7 × 10−8 1.3 × 10−8 1.8 × 10−7

10 1.1 × 10−8 1.5 × 10−8 2.4 × 10−7

14 9.0 × 10−9 1.0 × 10−8 1.8 × 10−7

21 5.6 × 10−9 5.2 × 10−9 1.0 × 10−7

28 6.1 × 10−9 5.0 × 10−9 1.0 × 10−7

108

1 8.9 × 10−8 2.5 × 10−6 3.6 × 10−7

3 3.6 × 10−8 1.6 × 10−8 1.8 × 10−6

7 1.3 × 10−8 5.7 × 10−9 8.9 × 10−8

10 5.3 × 10−9 6.4 × 10−9 1.2 × 10−7

14 4.6 × 10−9 4.4 × 10−9 8.9 × 10−8

21 2.8 × 10−9 2.3 × 10−9 5.1 × 10−8

28 3.0 × 10−9 2.2 × 10−9 5.1 × 10−8

109

1 1.6 × 10−7 1.0 × 10−7 1.5 × 10−6

3 1.0 × 10−7 6.7 × 10−8 1.0 × 10−6

7 6.7 × 10−8 4.3 × 10−8 6.6 × 10−7

10 6.2 × 10−8 4.0 × 10−8 6.1 × 10−7

14 5.5 × 10−8 3.6 × 10−8 5.5 × 10−7

21 4.4 × 10−8 2.9 × 10−8 4.4 × 10−7

28 3.9 × 10−8 2.5 × 10−8 3.9 × 10−7

5 × 109

1 1.7 × 10−7 5.0 × 10−8 7.7 × 10−7

3 8.7 × 10−7 3.3 × 10−8 5.1 × 10−7

7 4.8 × 10−8 2.1 × 10−8 3.3 × 10−7

10 4.1 × 10−8 2.0 × 10−8 3.1 × 10−7

14 3.5 × 10−8 1.8 × 10−8 2.8 × 10−7

21 2.7 × 10−8 1.4 × 10−8 2.2 × 10−7

28 2.3 × 10−8 1.3 × 10−8 1.9 × 10−7
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Температура слабо влияет на выщелачивание 
ионов из  матрицы на  основе титаната Nd.  Для 
матрицы сходного состава  [54] скорости выще-
лачивания при 200–240°С (табл. 6) всего на по-
рядок выше, чем значения при 25°С, полученные 
в данной работе.

Известные данные по радиационной устойчи-
вости фаз системы Ln2O3–TiO2 в основном отно-
сятся к Ln2TiO5 [61]. Фазы Ln2TiO5 (Ln — ланта-
ноиды, иттрий) с  ромбической, гексагональной 
и кубической симметрией облучали 1 MэВ Kr2+ 
для определения доз и  температур аморфиза-
ции. Меньшее число работ посвящено Ln2Ti2O7, 
а  для Ln4Ti9O24 имеются единичные исследова-
ния. В  работе  [59] для La2Ti2O7 Dc определена 
как 2.16 × 1014 ион Kr2+/см2, критическая темпе-
ратура Tc  =  840  K. Близкие значения получены 
для R1.94Ti2.00O6.92 (R  — смесь  РЗЭ, отвечающая 
их соотношению в ВАО): Dc = 2.5 × 1014 Kr2+/см2,  
Тc  =  900  К  [17]. Для изученного нами титана-
та  РЗЭ с  ромбической структурой в  литературе 
имеются лишь единичные определения радиаци-
онной устойчивости [17]. Методом ионного облу-
чения (1 МэВ Kr2+) для фаз Nd3.96(Ti8.92Zr0.12)O23.94 
и R3.95(Ti8.71Zr0.34)O24.01 (R = 0.43La + 0.92Ce + 0.30
Pr + 1.63Nd + 0.25Sm + 0.10Eu + 0.09Gd + 0.23Y)  
критические дозы облучения при Т = 298 К опре-
делены как 3 × 1014 Kr2+/см2 (или около 0.2 сме-
щения на атом), а их критические температуры, 
выше которых аморфизации не происходит, со-
ставляют 900 К.

Нами установлено, что титанат Nd, получен
ный в ИПХТ с использованием в качестве пре-
курсора гранулята, устойчив при  облучении 
электронами до  высоких поглощенных доз. 
Оценка доз повреждения структуры при  рас-
считанном сечении смещения (формула  (1)) 
показывает, что облучаемый материал, полу-
ченный в  настоящей работе при  максимальной 
поглощенной дозе 5×109 Гр, получил дозу, экви

валентную 0.4 смещения на атом. Аналогичный 
вывод сделан в работе [72] по результатам облу-
чения бритолита в электронном микроскопе FEI 
Tecnai F30 при  напряжении 300  кэВ (поток 
1.8  ×  1024  эл./(м2  с), флюенс 1.08  ×  1027  эл./м2).  
Облучение проводили фокусировкой пучка 
электронов на  участке 100  ×  100  нм. Показано, 
что после облучения дозой в 1013 Гр бритолит со-
храняет структуру. 

ЗАКЛЮЧЕНИЕ

Прогресс в решении задачи обращения с ми-
нор-актинидами связан с  фракционированием 
ВАО на группы элементов. Потенциальными ма-
трицами для изоляции служат минералоподоб-
ные фазы со структурами пирохлора, монацита, 
бритолита, цирконолита. Другая группа матриц 
представлена титанатами неодима, в  частности 
Nd4Ti9O24.

Нами впервые получены данные о  влиянии 
на  свойства Nd4Ti9O24 облучения электронами 
с энергией 4.5–5.0 МэВ до дозы 5 × 109 Гр, ко-
торая сопоставима с той, что остеклованные от-
ходы переработки  ОЯТ получат за  сотни тысяч 
лет (табл. 1, рис. 9). На рис. 9 показаны значения 
накопленных доз, которые получат остеклован-
ные ВАО от наработки плутония и переработки 
ОЯТ от альфа- и бета-излучателей в зависимости 
от времени их геологического хранения.

По данным РФА и СЭМ/ЭДС-анализа, состав 
и  строение образцов после облучения не  меня-
ются. Это отличает их от стеклообразных матриц, 
в  которых при  тех  же дозах облучения электро-
нами наблюдаются гетерогенизация стекла, об-
разование газовых пузырьков  [35, 73] и  флюи-
дизация  — текучесть при  низкой (комнатной) 
температуре из-за снижения температуры стекло-
вания  [74]. Масштабы явлений невелики (нано- 
и микрометры), но они могут влиять на свойства 

Таблица 6. Скорости выщелачивания элементов в имитаторе вод Нижнеканского массива

Период, сут
Скорость выщелачивания, г/(см2 сут)

Nd Ti Zr
режим 1 (200°С, 12 атм) / режим 2 (240°С, 32 атм)

1 3.7 × 10−9 / 1.3 × 10−8 8.9 × 10−8 / 3.6 × 10−10 2.8 × 10−9 / 
6.0 × 10−9

3 1.0 ×10−9 / 4.7 × 10−9 4.5 × 10−8 / 1.8 × 10−10 2.3 × 10−9 / 
3.0 × 10−9

7 1.7 ×10−9 / 4.1 × 10−9 2.4 × 10−8 / 2.4 × 10−7 1.7 × 10−9 / 
1.5 × 10−9

10 3.1 ×10−10 / 3.6 × 10−8 6.6 × 10−9 / 1.5 × 10−7 5.4 × 10−11 / 2.0 × 10−9

14 1.4 ×10−9 / – 4.8 × 10−9 / – 4.1 × 10−10 / –

21 8.4 × 10−10 / 4.0 × 10−13 3.4 × 10−9 / 6.6 × 10−11 8.8 × 10−9 / 
6.4 × 10−11
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Рис.  9. Поглощенная доза в  остеклованных ВАО 
от  выделения плутония (1, 3)  и  ВАО от  переработ-
ки ОЯТ (2, 4): 1, 2 — α-излучение; 3, 4 — β-излуче-
ние [35].

матрицы и снижать ее устойчивость за счет раз-
рушения связей между атомами структурного 
каркаса под действием облучения электронами. 
Вероятно, именно этим и объясняется некоторое 
снижение устойчивости изученных нами кера-
мических образцов при дозах выше 109 Гр с уве-
личением в  10  раз скорости выщелачивания Nd 
(имитатор РЗЭ-актинидной фракции).

Требования к  матрицам для иммобилизации 
отходов состоят в  высоком содержании  ВАО, 
низкой скорости выщелачивания, возможности 
их  промышленного получения. Матрица на  ос-
нове титаната неодима Nd4Ti9O24 отвечает указан-
ным критериям. Многокомпонентный химиче-
ский состав РЗЭ-МА-фракций при изготовлении 
отходных форм приводит к тому, что в результате 
кристаллизации целевой фазы образуются кри-
сталлические структуры, в  которых несколько 
элементов способны занимать одни и те же струк-
турные позиции кристаллической решетки.

Такие фазы относятся к  высокоэнтропий-
ным  [75, 76], а  их  коррозионная устойчивость 
выше, чем у  моноэлементной неодимовой ке-
рамики той  же структуры. В  качестве потен-
циальных матриц, актинид-содержащих ВАО, 
ранее рассматривались высокоэнтропийные 
фазы со  структурой пирохлора или граната  [77, 
78]. Скорости выщелачивания элементов (РЗЭ) 
из  такой керамики на  1–3  порядка ниже, чем 
из моноэлементных фаз с аналогичной кристал-
лической структурой.
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