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Лазерно-индуцированные периодические поверхностные структуры (ЛИППС) из  чередующих-
ся линий аморфной и кристаллической фаз в тонкопленочных халькогенидных фазопеременных 
материалах перспективны для приложений в  перестраиваемых энергонезависимых фотонных 
устройствах. В работе рассмотрена фемтосекундная модификация аморфных пленок халькогенид-
ных соединений Ge2Sb2Te5, GeTe и Sb2Te3. Анализ закристаллизованных областей и областей фор-
мирования ЛИППС проводили с  помощью эллипсометрии, оптической и  атомно-силовой мик
роскопии, а  также спектроскопии комбинационного рассеяния. В  узком диапазоне плотностей 
энергий фемтосекундных импульсов в  пленках GeTe и  Ge2Sb2Te5 записаны аморфно-кристалли-
ческие ЛИППС, в то время как в Sb2Te3 двухфазные периодические структуры не формировались 
ни при каких значениях плотности энергии.

Ключевые слова: фазопеременные материалы; система Ge–Sb–Te, тонкие пленки, фемтосекундные 
лазерные импульсы; лазерная кристаллизация; лазерно-индуцированные периодические поверх-
ностные структуры; атомно-силовая микроскопия
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ВВЕДЕНИЕ

Вызывающие в  последнее время фундамен-
тальный и  прикладной интерес фазоперемен-
ные материалы характеризуются наличием двух 
реверсивно переключаемых стабильных состоя
ний, например, аморфное↔кристаллическое 
или полупроводник↔металл, значительно разли
чающихся физическими свойствами. Халькоге-
нидные соединения системы Ge–Sb–Te, при-
надлежащие линии квазибинарного разреза 
Sb2Te3–GeTe, являются типичными представи-
телями фазопеременных материалов, обладаю-
щих аморфным и  кристаллическим состояния-
ми с  сильно различающимися электрическими 
и оптическими характеристиками. В общем слу-
чае квазибинарный разрез Sb2Te3–GeTe содер-

жит несколько устойчивых фазопеременных со-
единений [1, 2], среди которых наиболее хорошо 
изучено тройное соединение Ge2Sb2Te5 (GST225). 
Благодаря скорости переключения и  простоте 
контроля над фазами соединение Ge2Sb2Te5 при-
влекательно для создания устройств памяти, ла-
зерной литографии, конфигурируемых метапо-
верхностей, элементов интегральных фотонных 
и нейроморфных систем [3–7].

Кристаллическая фаза Ge2Sb2Te5 состоит  
из двух подрешеток — GeTe и Sb2Te3 [8–11]. В свою 
очередь соединения GeTe и Sb2Te3 также являют-
ся фазопеременными и характеризуются контро-
лируемыми переключениями между аморфным 
и  кристаллическим состояниями  [12–21]. Би-
нарное соединение GeTe обусловливает, в част-
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ности, высокую термическую стабильность, 
а Sb2Te3 позволяет реализовывать сверхбыстрые 
фазовые переключения, поскольку доминиру-
ющим механизмом кристаллизации является 
рост кристаллических зародышей  [11]. Вслед-
ствие специфической зонной структуры Sb2Te3 
является топологическим изолятором  [22–24], 
и  микроструктурирование его поверхности 
представляет интерес с  точки зрения влияния 
на поверхностную электропроводность. 

Воздействие ультракоротких лазерных импуль-
сов может приводить к  возникновению лазерно-
индуцированных периодических поверхностных 
структур  (ЛИППС) на  поверхностях различных 
материалов: металлов, полупроводников, диэлек
триков, полимерных систем  [25–27]. Причину 
их возникновения обычно связывают с интерфе-
ренцией падающего светового пучка со  вторич-
ной волной (поверхностный плазмон-поляритон), 
формирующейся на  поверхности облучаемого 
материала, если речь идет о металлах или узкозон-
ных полупроводниках  [28–30]. Интерференция 
приводит к периодической модуляции температу-
ры, приводящей к формированию периодических 
структур в  результате плавления и  абляции  [25, 
31–33], фотохимических изменений  [34, 35] или 
локальной кристаллизации (в  случае фазопере-
менных материалов) [36–38].

Безабляционные аморфно-кристаллические 
ЛИППС в  фазопеременных материалах пред
ставляют особый интерес вследствие неразру
шающего процесса их  формирования. Сохра-
нение модифицируемого материала допускает 
последующее восстановление исходной аморф
ной фазы, т.е. стирание периодических струк-
тур, что в дальнейшем дает возможность форми-
рования новой системы ЛИППС с  измененной 
структурой в зависимости от требований решае
мой задачи. Наиболее подробные исследования 
аморфно-кристаллических структур в фазопере-
менных материалах проводились для соединения 
Ge2Sb2Te5  [37–42], в  котором формировались 
структуры с  различным периодом в  зависимо-
сти от  длины волны, ориентированные пер-
пендикулярно или параллельно поляризации 
светового поля. На примере Ge2Sb2Te5 была про-
демонстрирована перезапись ЛИППС  [39, 41],  
показано применение пленки с  записанной 
ЛИППС-структурой в  качестве отражающей 
дифракционной решетки  [40], проведен ста-
тистический анализ ориентации аморфно-
кристаллических линий при  различных дли-
тельностях и  частотах следования лазерных 
импульсов [42].

Для фазопеременных бинарных компонентов 
системы Ge–Sb–Te (соединений GeTe и Sb2Te3) 
исследования лазерно-индуцированных перио

дических поверхностных структур малочис-
ленны. К  таковым можно отнести воздействие 
фемтосекундных импульсов (260  фс, 100  кГц) 
с  длиной волны 800  нм на  кристаллическую 
пленку GeTe  [36], в  которой аморфно-кристал-
лические ЛИППС формировались параллельно 
поляризации светового поля с  периодом около 
600 нм. В случае Sb2Te3 наблюдались только абля-
ционные периодические поверхностные струк-
туры [43, 44].

Цель данной работы — изучение возможного 
влияния структуры и физических характеристик 
тонкопленочных халькогенидных материалов 
на  различия в  их лазерной модификации. Для 
этого  проведено сравнение режимов формиро-
вания периодических структур на  поверхности 
аморфных пленок Ge2Sb2Te5, GeTe, Sb2Te3, имею-
щих близкую толщину, полученных одинаковым 
способом на стеклянных подложках, при воздей-
ствии фемтосекундным излучением.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Тонкие аморфные пленки Ge2Sb2Te5, Sb2Te3 
и GeTe формировали на стеклянных подложках 
методом магнетронного распыления. Процесс 
распыления осуществлялся с  использовани-
ем источника постоянного тока при  мощности 
25  Вт, в  качестве рабочего газа использовался 
аргон, его давление в  процессе напыления со
ставляло 5.7 × 10−1 Па. Аморфное состояние пле-
нок подтверждалось формой спектров комби-
национного рассеяния света. Толщины пленок 
и их шероховатость определяли с помощью атом-
но-силового микроскопа Solver Pro (NT-MDT). 
Толщины составили ~120 нм при шероховатости 
менее 3 нм.

Оптические постоянные сформированных 
халькогенидных пленок были измерены с  по-
мощью эллипсометра Uvisel  2 (Horiba Scientific) 
в диапазоне длин волн от 400 до 2000 нм. Моде-
лирование показателя преломления n и коэффи-
циента экстинкции k проводилось с применени-
ем математической модели Тауц–Лоренца  [45] 
на образце Si/SiO2 / халькогенидный материал / 
халькогенидный материал  +  воздух (1  :  1), где 
SiO2 — тонкий слой естественного оксида крем-
ния на  поверхности подложки, а  халькогенид-
ный материал + воздух (в соотношении 1 : 1) —  
тонкий слой, соответствующий шероховатости 
пленки. Оптические постоянные были опреде-
лены как для исходных аморфных пленок, так 
и для отожженных (кристаллических) при 190°C 
(Sb2Te3), 200°С (Ge2Sb2Te5) или 240°C (GeTe) 
с  выдержкой в  течение 15  мин в  атмосфере ар-
гона. Температура отжига была на  30°C выше 
температуры кристаллизации, определенной 
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по  скачку электропроводности на  пленке соот-
ветствующего состава.

Оптическая модификация тонких пленок раз-
личного состава осуществлялась путем сканиро-
вания лазерным пучком по поверхности образца. 
Источником излучения служила лазерная систе-
ма (рис.  1) на  основе кристалла Yb:KGW с  реге-
неративным усилителем TЕТА-20/200‑HE-SP  
(“Авеста-Проект”) с  длиной волны 1030  нм 
и  минимальной длительностью импульса около 
250 фс. Сканирование тонкопленочного образца 
лазерным пучком проводили при помощи гальва-
нометрического сканатора hurrySCAN  III  14 
(Scanlab). Для фокусировки пучка использова-
лась линза LINOS F-Theta Ronar (QiOptiq) с фо-
кусным расстоянием 70 мм, диаметр пучка в пе-
ретяжке по уровню интенсивности 1/e2 составлял 
2w0 = 26 мкм. 

В  процессе модификации средняя мощность 
лазерного излучения составляла P = 100 мВт, ча-
стота следования импульсов ν = 100 кГц, энергия 
в  импульсе равнялась Ep  =  1  мкДж. Для варьи-
рования размера облучаемой области образец 
смещали относительно фокальной плоскости 
в  область расходящегося пучка на  расстояние 
до  5  мм, при  этом диаметр пучка достигал зна-
чения 2w  =  220  мкм. Трансформацию профиля 
пучка при  смещении измеряли профилометром 
BP209‑VIS (ThorLabs); мощность лазерного из-
лучения контролировали измерителем Nova  II 
(Ophir). Скорость сканирования составляла 
Vx = 400 мкм/с. Плотность энергии на оси пучка 
F0 = 1 / ν × 2P / (π × w2) варьировалась в диапазо-
не от 4.8 до 200 мДж/см2.

Анализ конфигурации областей модифика-
ции, отражательной способности, ориентации 
и периодичности двухфазных структур проводи-
ли с помощью оптического микроскопа BiOptic 
SM-300 (Opto-Edu), оснащенного камерой 
SIMAGIS TC-63CU. Изменение коэффициента 
отражения в  модифицированных зонах образца 
определяли по изменению яркости изображения, 
предполагая линейную зависимость отражения 
от степени кристалличности [46]. Для определе-
ния порогов плотности энергии для различных 
типов модификации использовали подход, осно-
ванный на измерении размеров областей моди-
фикации в различных положениях пленки отно-
сительно перетяжки [47].

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Спектральные зависимости показателей пре-
ломления и  коэффициентов экстинкции для 
аморфной и кристаллической фаз тонких пленок 
всех исследуемых соединений определяли по-
средством спектроскопической эллипсометрии 

в  видимом и  ближнем инфракрасном диапазо-
нах. Полученные значения хорошо согласова-
лись с данными [48] для тонких пленок этих же 
соединений, полученных лазерным напылени-
ем. Коэффициенты отражения  R для зеленого 
излучения (длина волны 515  нм), рассчитанные 
на основе полученных нами данных по эллипсо-
метрии с  помощью соотношений Френеля  [49], 
представлены в  табл.  1. Среди аморфных мате-
риалов пленки GeTe характеризуются наимень-
шим, а пленки Sb2Te3 — наибольшим коэффици-
ентами отражения. Контраст  C коэффициентов 
отражения между аморфной и кристаллической 
фазами наибольший для GeTe и минимален для 
Sb2Te3.

В  результате воздействия сканирующего све-
тового пучка на  поверхностях пленок всех со-
ставов сформировались полосы, соответствую-
щие различным типам модификации. Для GeTe 
и  Ge2Sb2Te5 в  определенном диапазоне плотно-
стей энергии внутри записанной полосы наблю-
дали чередующиеся светлые и темные линии (т.е. 
ЛИППС), ориентированные перпендикулярно 
поляризации светового пучка. При  облучении 
Sb2Te3 периодические структуры внутри запи-
санных полос не формировались. Определенные 
с  помощью оптической микроскопии коэффи-
циенты отражения светлых областей в  полосах 
модификации (табл. 1) и  в  структурах ЛИППС 
согласуются с  величинами коэффициентов от-
ражения закристаллизованных пленок, получен-
ными из эллипсометрических исследований.

Изображения, характеризующие основные 
режимы лазерной модификации, представле-
ны на рис. 2 для различных значений локальной 
плотности энергии на  оси светового пучка F0. 
Так, при  F0  ≥  30  мДж/см2 в центральной части 
записанной полосы происходила абляция пле-

Образец

F-тета

Гальванометрический
сканатор

Зеркало 1

y
x

Vx

z

Зеркало 2

Лазер
1030 нм

Рис. 1. Оптическая схема экспериментальной уста-
новки.
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Таблица 1. Коэффициенты отражения Rc и Ra, определенные с помощью эллипсометрии и оптической микро-
скопии

Эллипсометрия Микроскопия

Образец R C = (Rc − Ra) / Rc R C = (Rc − Ra) / Rc

a-GeTe 0.38
0.45

0.33
0.38

c-GeTe 0.68 0.53

a-Ge2Sb2Te5 0.39
0.21

0.39
0.29

c-Ge2Sb2Te5 0.5 0.55

a-Sb2Te3 0.54
0.19

0.5
0.11

c-Sb2Te3 0.67 0.56

Примечание. Индексы a и c соответствуют аморфному и кристаллическому фазовому состоянию пленки соответственно.

нок (рис.  2a, 2е, 2м). При  меньших плотностях 
энергии в Sb2Te3 формировалась закристаллизо-
ванная полоса с размытыми границами (рис. 2н, 
2о, 2п), в  то  время как для GeTe и  Ge2Sb2Te5 
кристаллическая полоса контрастно выделя-
лась на  аморфном фоне, кроме того, она была 
обрамлена зоной из  приграничных ЛИППС 
(рис. 2б, 2в для GeTe и 2ж, 2з, 2и для Ge2Sb2Te5). 
Наименьший порог модификации получили для 
Ge2Sb2Te5: в этом случае ЛИППС начинали фор-

GeTe
F0 = 38.0 мДж/см2

28.9

28.9 38.0

26.6 26.5

16.9 16.9 16.9

8.9 9.3

6.1

5.6

9.3

Ge2Sb2Te5 Sb2Te3
(е)(а)

(л)

(б) (ж)

(м)

(в) (з)

(н)

Vx

E

(г) (и)

(о)

(д)

5 мкм 5 мкм20 мкм

(к)

(п)

(р)

Рис.  2. Изображения с  оптического микроскопа 
пленок GeTe, Ge2Sb2Te5 и  Sb2Te3, модифицирован-
ных фемтосекундным излучением различной плот-
ности энергии F0. Изображения (д) и (p) показывают 
ЛИППС на поверхности GeTe и Ge2Sb2Te5 в увели-
ченном масштабе; изображения  (в), (з), (о), (п) до-
полнены цветокартами для более контрастной ви-
зуализации изменения отражательной способности.   
E – направление поляризации записывающего пучка.

мироваться при  локальной плотности энергии 
F0  =  5.6  мДж/см2 (рис.  2л). В  случае бинарных 
соединений модификация начиналась при  боль-
ших значениях плотности энергии: в GeTe порог 
появления ЛИППС составлял F0  =  8.9  мДж/см2  
(рис.  2г). В  Sb2Te3 периодических структур 
не  наблюдалось, а  поскольку контраст коэф-
фициента отражения между аморфной и  кри-
сталлической фазами невелик, то  кристалли-
зацию, слабо регистрируемую в  оптический 
микроскоп, удавалось фиксировать при плот-
ностях энергии на  уровне  F0  >  9.3  мДж/см2  
(рис. 2п).

Энергетический диапазон, в котором наблю-
дались только ЛИППС (без кристаллической 
области на  оси пучка), был достаточно узким 
и составлял для GeTe FЛИППС = 8.9–10.4 мДж/см2, 
а для Ge2Sb2Te5 FЛИППС = 5.6–6.5 мДж/см2. Мень-
ший порог формирования ЛИППС для пленки 
Ge2Sb2Te5 по  сравнению с  GeTe хорошо согла-
суется с большим поглощением для этой пленки 
и более широкой областью модификации. Увели-
чение поглощения пленки Ge2Sb2Te5 можно свя-
зать с  увеличением концентрации более слабых 
связей −Sb−Te− по сравнению с более сильными 
связями −Ge−Te− [50].

Топологию наиболее однородных ЛИППС 
(рис.  3) исследовали с  помощью атомно-сило-
вой микроскопии  (АСМ). Видно, что в  обоих 
соединениях ЛИППС имеют схожие профили. 
Период структур на поверхностях обеих пленок 
составлял около 1  мкм, что хорошо согласуется 
с  длиной волны модифицирующего излучения. 
Разница по высоте между аморфными гребнями 
и кристаллическими впадинами для GeTe состав-
ляет HЛИППС = 4–5 нм (рис. 3в), что выше значе-
ния HЛИППС = 2–3 нм (рис. 3е) для аналогичной 
величины в случае Ge2Sb2Te5.
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Ориентационное качество сформирован-
ных периодических структур в  пленках GeTe 
и Ge2Sb2Te5 (рис. 4) изучалось с помощью подхо-
да DLOA [33, 42, 51], основанного на статистиче-
ском анализе ориентационного распределения 
пикселей изображения, содержащего периоди-
ческую структуру. Для количественной оцен-
ки пространственного периода использовали 
Фурье-анализ. Ориентационное распределение 
(количество пикселей, имеющих определенный 
угол ориентации относительно выбранного на-
правления) для аморфно-кристаллических ли-
ний показало, что для обеих пленок (рис.  4в) 
на  оси пучка они ориентированы ортогонально 
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Рис. 3. Лазерно-индуцированные периодические поверхностные структуры на пленках GeTe (а, б, в), сформирован-
ные фемтосекундным излучением при плотности энергии F0 = 9.8 мДж/см2, и Ge2Sb2Te5 (г, д, е), сформированные 
при F0 = 6.1 мДж/см2; изображения с оптического микроскопа (а, г), АСМ-изображения (б, д) и измеренные выcот-
ные профили (в, е). 
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поляризации с высокой точностью: угол ориен
тации пикселей относительно направления по-
ляризации θ равен −1.5° для GeTe и −4.5° для 
Ge2Sb2Te5. Ориентационные распределения 
пикселей имеют одинаковые ширины (FWHM). 
Пространственная частота ЛИППС также 
одинакова для GeTe и  Ge2Sb2Te5 и  составляет 
Λ = 1.01 мкм−1, что достаточно хорошо соответ-
ствует (1/Λ = 0.99 мкм) длине волны записываю-
щего ЛИППС лазерного излучения.

Спектры комбинационного рассеяния све-
та  (КРС), полученные от  светлых или темных 
полос ЛИППС на  поверхности аморфных 

Рис. 4. Оптические изображения ЛИППС на пленках GeTe (a) и Ge2Sb2Te5 (г); соответствующий анализ ориентаци-
онного распределения пикселей изображений (DLOA-analysis) (в); Фурье-анализ периодичности ЛИППС на пленках 
GeTe (б) и Ge2Sb2Te5 (д).
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пленок, приведены на  рис.  5. Для получения 
спектров сначала снималась карта размером 
приблизительно 10  ×  10  мкм, внутри которой 
по данным с оптического микроскопа выбира-
лись точки, соответствующие линиям с различ-
ным отражением, в которых регистрировались 
спектры КРС. Существенное различие между 
спектрами подтверждает селективную кристал-
лизацию в облученных образцах вследствие со-
ответствия форм спектров  КРС литературным 
данным [52, 53].

Таким образом, рассмотрение фемтосе-
кундной модификации халькогенидной плен-
ки на основе Ge2Sb2Te5 в сравнении с двумя со-
ставляющими ее  компонентами  — бинарными 
соединениями GeTe и Sb2Te3 — позволяет пред-
положить схожесть лазерной модификации по-
верхности в GeTe и Ge2Sb2Te5. В частности, толь-
ко в  этих соединениях формируются ЛИППС 
в виде чередующихся аморфных и кристалличе-
ских линий, в то время как в Sb2Te3 периодиче-
ские структуры при  фемтосекундном лазерном 
воздействии не образуются. 

Исследованные образцы являются слоис-
тыми материалами, кристаллическая решетка 
которых (рис.  6) представляет собой структуры 
с разным числом слоев в пакете [54, 55]. Плоско-
сти слоев перпендикулярны кристаллографиче-
ской оси [111]. Как видно из рис. 6, слои состоят 
из атомов одного сорта, хотя для Ge2Sb2Te5 этот 
вопрос остается дискуссионным, поскольку есть 
исследования, предполагающие катионные слои 

Рис.  5. Спектры  КРС в  области ЛИППС, сформи-
рованных фемтосекундными импульсами в  GeTe 
и Ge2Sb2Te5.

в виде расположенных случайным образом ато-
мов германия и сурьмы [56]. Для теллурида сурь-
мы и  тройного соединения характерно наличие 
щели Ван-дер-Ваальса (vdW), которая форми-
руется между слоями атомов теллура. В  рабо-
те  [57] предполагается, что щель в  Ge2Sb2Te5 
может быть образована упорядоченными кати-
онными вакансиями. В  случае теллурида гер-
мания щель Ван-дер-Ваальса отсутствует. Для 
соединения Ge2Sb2Te5 пакет состоит из 9 слоев, 
в которых чередуются слои Ge/Sb и Te, уложен-
ные в плоскости, перпендикулярной кристалло-
графической оси с. Для бинарных соединений 
GeTe и  Sb2Te3 пакет содержит 7 и  5  слоев соот-
ветственно. Близость структур рассмотренных 
соединений не позволяет объяснить проявление 
светоиндуцированных периодических структур 
в GeTe и Ge2Sb2Te5 и их отсутствие в Sb2Te3. Сле-
дует отметить, что энергии химических связей 
Gе–Te и  Sb–Te составляют соответственно 200 
и 195 кДж/моль, т.е. также мало различаются [58].

Возможной причиной, объясняющей разли-
чия в  формировании периодических структур 
в  аморфных пленках, является механизм кри-
сталлизации. Если в Ge2Sb2Te5 и GeTe доминиру-
ющий механизм кристаллизации связан с ростом 
числа кристаллических зародышей, то для Sb2Te3 
кристаллизация определяется ростом самих заро-
дышей. Во втором случае снижается температура 
кристаллизации, что приводит к кристаллизации 
всей облучаемой поверхности, без проявления 

GeTe Sb2Te3

vdW vdW

Ge2Sb2Te5

Рис.  6. Кристаллические структуры GeTe  (a), 
Sb2Te3 (б) и Ge2Sb2Te5 (в): синие шарики — атомы Ge, 
красные — атомы Sb, зеленые — атомы Te.
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чередующихся аморфных и  кристаллических 
полос. Другой причиной отсутствия ЛИППС 
в  пленке теллурида сурьмы является возможное 
отсутствие плазмонной волны на границе Sb2Te3/
воздух, поскольку проводимость этой пленки су-
щественно меньше, чем проводимость пленок 
Ge2Sb2Te5 и  тем более GeTe. Так, согласно  [59], 
удельные проводимости тонких пленок состав-
ляли 5000–6750 См/см (GeTe), 1500–3700 См/см  
(Ge2Sb2Te5) и 660 См/см (Sb2Te3). Разница в зна-
чениях обусловлена различными технологиями 
приготовления тонких пленок, однако для всех 
случаев при  переходе от  теллурида германия 
к  теллуриду сурьмы проводимость значительно 
уменьшается. Поскольку проводимость халько-
генидных стеклообразных и аморфных полупро-
водников, включая рассматриваемые материалы, 
является дырочной в соответствии с данными по  
термо-ЭДС, и принимая во внимание, что по
движности носителей заряда для теллуридных 
систем не претерпевают значительных измене-
ний при варьировании состава, наблюдаемое 
уменьшение проводимости, по всей видимости, 
обусловлено изменением концентрации носите-
лей заряда (“дырок”), а соответственно, и сво-
бодных электронов, поскольку рассматриваемые 
полупроводники являются собственными (не-
легированными). Мы предполагаем, что это яв-
ляется основной причиной, почему для состава 
Sb2Te3 не образуется поверхностная плазмонная 
волна с последующим формированием аморфно-
кристаллических периодических структур.

ЗАКЛЮЧЕНИЕ

Сравнительное исследование воздействия 
лазерного излучения фемтосекундной длитель-
ности на  тонкие аморфные халькогенидные 
пленки соединений GeTe, Ge2Sb2Te5, и  Sb2Te3 
показывает, что в  аморфных пленках GeTe 
и  Ge2Sb2Te5 формируются ЛИППС. Они хо-
рошо различимы и представляют собой линии 
аморфной и  кристаллической фаз, ориенти-
рованные перпендикулярно световому полю 
с  периодом, близким к  длине волны записы-
вающего пучка. Результаты анализа ЛИППС 
посредством оптической микроскопии и АСМ, 
а также спектроскопии КРС указывают на сход-
ство механизмов формирования периодиче-
ских структур в  GeTe и  Ge2Sb2Te5. Отсутствие 
ЛИППС в  Sb2Te3 может быть следствием зна-
чительно меньшей проводимости и  различий 
в механизмах кристаллизации (рост зародышей 
или рост числа зародышей). 

Понимание механизмов формирования по-
верхностных периодических структур в  халько-
генидных соединениях важно для создания и оп-
тимизации модулирующих излучение планарных 
устройств.
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