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Продолжены исследования по  разработке технологии синтеза нанокерамических электролитов 
на основе высокопроводящих нестехиометрических тисонитовых (пр. гр. P c3 1) твердых растворов. 
Получены нано- и микроразмерные образцы керамики состава (Ce0.5Pr0.5)0.95Sr0.05F2.95, исследова-
ны их рентгенографические, структурно-морфологические и кондуктометрические характеристи-
ки. Исходный твердый электролит синтезировали методом спонтанной кристаллизации расплава 
во фторирующей атмосфере, затем измельчали в ступке и в шаровой мельнице для получения по-
рошка разных фракций и прессовали холодным способом. Обнаружено, что наноразмерная кера-
мика обладает более высокими электролитическими характеристиками в сравнении с микрокера-
микой. Ионная проводимость нанокерамики (Ce0.5Pr0.5)0.95Sr0.05F2.95 составляет σdc = 4.7 × 10−3 См/см 
при 500 K, энтальпия активации ионного переноса обусловлена миграцией вакансий фтора на меж-
зеренных границах и составляет ΔHa = 0.43 эВ (T < 560 K) и 0.27 эВ (T > 560 K). Катионный состав 
изученного многокомпонентного твердого электролита является перспективным для дальнейшей 
оптимизации синтеза фторидной нанокерамики и ее практического применения в твердотельных 
электрохимических устройствах.
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ВВЕДЕНИЕ

Работа является продолжением исследований, 
направленных на оптимизацию состава трехком-
понентных фаз (Ce0.5Pr0.5)0.95M0.05F2.95 со структу-
рой тисонита (пр. гр. P c3 1), где M = Ca, Sr, Ba, 
по величине ионной проводимости [1]. Тисони-
товые фторидные фазы активно используются 
в  качестве фторпроводящих твердых электроли-
тов (ФТЭ) во фтор-ионных источниках тока [2–5].  
Твердые растворы (Ce0.5Pr0.5)0.95M0.05F2.95 в  виде 
поликристаллических сплавов обладают высокой 
внутризеренной (внутрикристаллитной) ионной 
электропроводностью при  комнатной темпера-
туре  [1]. Максимальная внутризеренная прово-
димость σ293 K = 1.3 × 10−3 См/см наблюдается для 
стронцийсодержащего состава, она существенно 
превышает ионную электропроводность объем-
ных кристаллов R0.95Sr0.05F2.95 (R = Ce, Pr) [6].

Для практического применения ФТЭ в твер-
дотельных электрохимических устройствах 
(особенно в  источниках химической энергии) 
большой интерес представляет керамическая тех
нологическая форма, которая может быть реа
лизована на  основе микро- и  наноразмерных 
кристаллических порошков  [7−9]. В  настоящее 
время нанопорошки тисонитовых ФТЭ широко 
применяют в конструкциях источников химиче-
ской энергии нового поколения [2−5, 10−12].

Учитывая результаты [1], для разработки стра-
тегии получения ФТЭ в нанокерамической фор-
ме выбран трехкомпонентный твердый раствор 
состава (Ce0.5Pr0.5)0.95Sr0.05F2.95.

Целью работы является синтез и  сравни-
тельный анализ ион-проводящих свойств нано- 
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и микрокерамики холодного прессования на ос-
нове электролита данного состава.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Керамический синтез (Ce0.5Pr0.5)0.95Sr0.05F2.95 
выполняли в  три этапа. На  первом этапе про-
водили спонтанную кристаллизацию расплава 
47.5CeF3 + 47.5PrF3 + 5SrF2 во фторирующей ат-
мосфере CF4 : He = 1 : 10 по модифицированной 
методике [13]. В качестве реактивов использова-
ли коммерческие порошки SrF2 (99.995 мас.%, 
Sigma-Aldrich), CeF3 и  PrF3 (99.99  мас.%, “Лан-
хит”). Для гомогенизации расплав выдержива-
ли при температуре 1823 K в течение 2 ч и затем 
охлаждали со  скоростью 100 K/ч. По  данным 
рентгенофазового анализа  (РФА), затвердев-
ший сплав является однофазным и  представля-
ет собой твердый раствор замещения со  струк-
турой тисонита (пр.  гр.  P c3 1, a  = 7.1077(1) Å,  
c = 7.2738(2) Å [1]).

Из части поликристаллического сплава выре-
зали плоскопараллельный монолитный образец 
толщиной 2 мм и площадью 10 мм2, на котором 
выполняли температурные электрофизические 
измерения для сравнительного анализа с  кера-
мическими образцами. Отметим, что в [1] были 
проведены электрофизические измерения об-
разца сплава аналогичного состава с существен-
но большей толщиной (10 мм) и только при ком-
натной температуре.

Полученный сплав перетирали на  воздухе 
в яшмовой ступке в микроразмерный порошок, 
который прессовали на  механическом прессе 
CarlZeiss (давление 500 МПа, время прессования 
10  мин) в  керамическую таблетку диаметром 3 
и толщиной 1.8 мм. 

Далее полученный микропорошок переводи-
ли в  планетарной шаровой мельнице Retch-200 
в  наноразмерный порошок. Процедуру помо-
ла проводили в  атмосфере Ar в  течение 2  ч су-
хим способом. Частота вращения планетар-
ного диска составляла 10 Гц.  Использовалась 
размольная гарнитура из хромированной стали. 
Соотношение масс размольных шаров и матери-
ала составляло 16  :  1, удельная энергия измель-
чения  — 2.2  кДж/г. Нанопорошок прессовали 
на  гидравлическом прессе ПЛГ-25 (давление 
500 МПа, время прессования 10 мин) в керамиче-
скую таблетку диаметром 10 и толщиной 3.2 мм.

Плотность ρ цилиндрических таблеток опре-
деляли методом взвешивания (аналитические 
весы A&D GH-200, ±10−4 г) с  учетом их  геоме-
трических размеров. Относительная погреш-
ность измерений ρ равна 5%.

Перед электрофизическими измерениями 
термический отжиг спрессованных образцов 
не проводился, т.е. исследовали электрофизиче-
ские свойства керамики холодного прессования.

Фазовый состав микро- и  нанопорошков 
контролировали методом РФА на рентгеновском 
дифрактометре Rigaku MiniFlex 600 (излучение 
CuKα). Регистрацию дифрактограмм проводили 
в диапазоне углов 2θ от 10° до 120°. Идентифика-
цию фаз осуществляли с помощью базы данных 
ICDD PDF-2 (2017). Для уточнения параметров 
элементарной ячейки использовался пакет про-
грамм Jana2006.

Микроструктуру и  элементный анализ мик
ро- и  нанопорошков изучали на  сканирующем 
электронном микроскопе (СЭМ) Scios с энерго-
дисперсионным рентгеновским спектрометром 
EDAX (FEI, США).

Постоянно-токовую электропроводность σdc  
керамических образцов и  сплава определяли 
из спектров комплексного импеданса Z*(ω) = Z/ + 
iZ// в диапазоне частот 5–5ʹ × 105 Гц на приборе 
Tesla BM-507. В  качестве электродов использо-
вали серебряную пасту Leitsilber, которую нано-
сили на  торцы образцов. Температурные элек-
трофизические измерения проводили в  вакууме 
~10−1 Па в интервале температур 295−826 K в ре-
жиме охлаждения. Описание экспериментальной 
установки и  методика импедансных измерений 
приведены в [14, 15]. Относительная погрешность 
измерений Z*(ω) равна 5%. 

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

На  рис.  1 приведены рентгенограммы по-
рошков  ФТЭ (Ce0.5Pr0.5)0.95Sr0.05F2.95, приготов-
ленных двумя способами. Уточненные параме-
тры элементарной ячейки тисонитового твердого 
раствора равны a  =  7.1077(1) Å, с  = 7.2738(2) Å 
и  совпадают с  данными  [1]. В  случае порошка, 
полученного механическим диспергированием 
в  планетарной мельнице, фазовых трансформа-
ций не наблюдается, брэгговские пики на рентге-
нограмме значительно уширены, что подтверждает 
его наноразмерность (размер области когерент-
ного рассеяния, рассчитанный по формуле Селя-
кова–Шерера, составляет 18 ± 1 нм). Результаты 
энергодисперсионного анализа нанопорошка 
(вставка на  рис.  1) подтверждают неизменность 
его количественного элементного состава, соот-
ветствующего составу исходной шихты, в процес-
се высокоэнергетического помола.

По  данным электронной микроскопии 
(рис. 2), в процессе ручного перемалывания ис-
ходного монокристалла (Ce0.5Pr0.5)0.95Sr0.05F2.95 на-
блюдается преимущественное образование суб-
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микро- и микроразмерных частиц нерегулярной 
формы в диапазоне от 0.15 до 3.0 мкм. Образец, 
полученный после дальнейшего высокоэнер-
гетического диспергирования микропорошка 
в шаровой мельнице, содержит отдельные нано-
частицы (40−100  нм) и  их  агломераты с  разме-
рами от 0.18 до 1.2 мкм. В [15] для порошков ти-
сонитового твердого раствора близкого состава 
Pr0.97Sr0.03F2.97, подвергнутых перетиранию ана-
логичными способами, были получены кристал-
лические зерна с размерами 1–5 мкм и 10–100 нм 
для ручного и  механического диспергирования 
соответственно.

На  рис.  3 показаны годограф импеданса 
Z*(ω) = Z/ + iZ// в комплексной плоскости Z/, −Z// 

2 мкм 2 мкм

(а) (б) (в)

Рис. 2. Внешний вид блоков (Ce0.5Pr0.5)0.95Sr0.05F2.95 и СЭМ-изображения полученных микро- и нанопорошков.

(диаграмма Найквиста) и  полная эквивалент-
ная электрическая схема для исследуемого на-
нокерамического образца (Ce0.5Pr0.5)0.95Sr0.05F2.95 
с  Ag-электродами. Значения плотности спрес-
сованных таблеток из  микро- и  нанопорошков 
(от теоретического значения ρX = 6.109 г/см [16]) 
приведены в табл. 1 и не превышают 84%. Годо-
графы импеданса для микрокерамики и  сплава 
имеют аналогичный вид. В общем виде идеаль-
ная эквивалентная электрическая схема для изу
ченных поликристаллических образцов и  спла-
ва содержит внутризеренные сопротивление Rig 
и  емкость Cig, межзеренные сопротивление Rgb 
и емкость Cgb, а также емкость двойного слоя гра-
ницы образец/электрод Cdl.

Рис.  1. Рентгенограммы микро- (1) и  нанопорошков  (2) (Ce0.5Pr0.5)0.95Sr0.05F2.95; на  вставке  — 
энергодисперсионный спектр нанопорошка.
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Вид годографов Z*(ω) для исследуемых образ-
цов не позволяет разделить вклады внутризерен-
ного (Rig) и  межзеренного (Rgb) сопротивлений 
в полное сопротивление образцов Rcer = Rig + Rgb 
(Ralloy = Rig + Rgb), поскольку выполняется усло-
вие Rgb>>Rig. Значения сопротивлений Rcer и Ralloy 
определяли по пересечению годографа импедан-
са Z*(ω) с осью действительных сопротивлений. 
После этого с  учетом геометрических размеров 
рассчитывали полную проводимость образцов: 

σi ih R S= ( ),

где h — толщина образца, S — площадь электро-
дов, Ri — полное сопротивление керамики (Rcer) 
и сплава (Ralloy).

На  рис.  4 показаны температурные зависи
мости электропроводности для микро- и  на-
норазмерной керамики и  сплава изученного 
твердого электролита. Значения проводимо-
сти σcer изменяются в  температурном интерва-
ле 337−826 K от  4.7  ×  10−6 до  1.2  ×  10−2  См/см  
(в  2.5  ×  103  раза) и  в  интервале 295−790 K 
от 8.3 × 10−6 до 3.9 × 10−2 См/см (в 4.7 × 103 раза) 
для микро- и наноразмерного образцов соответ-
ственно. Для сравнения значения проводимости 
сплава σalloy в температурном интервале 295−796 K  
изменяются от  2.3  ×  10−4 до  2.9  ×  10−2  См/см 
(в 1.3 × 102 раза).

На зависимостях σdc(T) для всех образцов на-
блюдаются изгибы при 560−580 K, которые раз-
деляют их на два участка. Такая особенность тем-
пературной зависимости ионной проводимости 
типична для фторидных твердых электролитов 
со структурой тисонита и определяется участием 
в  механизме ионного переноса вакансий фто-
ра, расположенных в разных структурных пози
циях [17−19].

–Z ʺ, 104 Oм

–Z ʹ, 104 Oм
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Rgb

Cgb
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Рис.  3. Годограф импеданса Z*(ω)  = Z/  + iZ// (диа-
грамма Найквиста) для системы Ag  |  нанокерамика 
(Ce0.5Pr0.5)0.95Sr0.05F2.95| Ag при 298 K; Rcer = 4.1 × 104 Ом 
(экстраполяция); цифры у кривой указывают часто-
ту в кГц; на вставке показана полная эквивалентная 
электрическая схема для этой электрохимической 
системы.
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Рис.  4. Температурные зависимости проводимости 
σdc(T) для твердого электролита (Ce0.5Pr0.5)0.95Sr0.05F2.95: 
1 — сплав (σalloy); 2 и 3 — микро- и нанокерамика со-
ответственно (σcer).

Таблица  1. Относительная плотность (ρ/ρX), полная 
проводимость керамических образцов (σcer) и  сплава 
(σalloy), энтальпия активации ионного переноса (ΔHa) 
для твердого электролита (Ce0.5Pr0.5)0.95Sr0.05F2.95

Образец
ρ/ρX,

%

σcer/σalloy, См/см
ΔHa, эВ

293 K 500 K

МК 74 5.7 × 10−7 7.5 × 10−4 0.47 (T < 580 K)
0.30 (T > 580 K)

НК 84 7.0 × 10−6 4.7 × 10−3 0.43 (T < 560 K)
0.27 (T > 560 K)

Сплав 100
2.2 × 10−4

1.1 × 10−4 [1]
7.7 × 10−3 0.25 (T < 560 K)

0.20 (T > 560 K)
Примечание. МК — микрокерамика, НК — нанокерамика.
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Зависимости σdc(T) для керамики и  сплава 
удовлетворяют уравнению Аррениуса–Френ
келя

σ −∆dc aA T H kT= ( ) ( )/ ,exp

где A  — предэкспоненциальный множитель, 
ΔHa — энтальпия активации ионного транспор-
та. В  табл.  1 приведены электролитические ха-
рактеристики керамических образцов и  спла-
ва (для сравнения) твердого электролита 
(Ce0.5Pr0.5)0.95Sr0.05F2.95. Нанокерамика холодного 
прессования по  сравнению с  микрокерамикой 
обладает более высокой величиной σcer. Меха-
низм ионной проводимости в керамике и сплаве, 
находящихся в поликристаллическом состоянии, 
обусловлен миграцией вакансий фтора на меж-
зеренных границах (ΔHa = 0.2−0.5 эВ).

В табл. 2 приведены результаты сравнительно-
го анализа проводимости σcer для синтезирован-
ной нанокерамики с  литературными данными 
по  проводимости наноразмерных тисонитовых 
твердых растворов La0.95Sr0.05F2.95 и  La1−yBayF3−y 
(y  = 0.05, 0.1), полученных механохимическим 
синтезом и  не  подвергнутых термическим от-
жигам. Можно видеть, что исследованная нано-
керамика (Ce0.5Pr0.5)0.95Sr0.05F2.95 не  уступает луч-
шим образцам нанокерамики тисонитовых ФТЭ, 
применяемых во фтор-ионных источниках тока.

Нарушения стехиометрии в тисонитовых кри-
сталлах R1−yMyF3−y (R = La−Lu, Y; M = Ca, Sr, Ba, 

Cd, Pb) далеко не всегда сопровождаются ростом 
σ293 K, достаточным для работы электрохими-
ческих устройств  [6, 17, 26−28]. Ниже условной 
границы σ293 K  = 10–4 См/см применение  ФТЭ 
в батареях считается нежелательным из-за их не-
достаточной проводимости [2, 29, 30]. При тем-
пературах выше 350 K значения проводимости 
нанокерамики (Ce0.5Pr0.5)0.95Sr0.05F2.95 лежат выше 
границы σcer > 10–4 См/см.

ЗАКЛЮЧЕНИЕ

Статья посвящена разработке технологии по-
лучения  ФТЭ в  керамическом состоянии для 
практического применения в электрохимических 
устройствах. С  этой целью изготовлена ми-
кро- и  наноразмерная керамика состава 
(Ce0.5Pr0.5)0.95Sr0.05F2.95 со структурой тисонита (пр. 
гр. P c3 1) и исследованы ее рентгенографические, 
структурно-морфологические и кондуктометри-
ческие характеристики.

Обнаружено, что нанокерамика холодного 
прессования по сравнению с микрокерамикой об
ладает более высокими электролитическими ха-
рактеристиками. Ионная проводимость нанокера-
мики (Ce0.5Pr0.5)0.95Sr0.05F2.95 равна 4.7 × 10−3 См/см  
при 500 K. Энтальпия активации ионного пере-
носа, обусловленная миграцией вакансий фто-
ра на межзеренных границах, составляет 0.43 эВ 
(T < 560 K) и 0.27 эВ (T > 560 K). 

Таблица  2. Ионная проводимость исследованной нанокерамики (Ce0.5Pr0.5)0.95Sr0.05F2.95 и  нанокерамики  
La1−yMyF3−y (M = Sr, Ba), используемой во фтор-ионных источниках тока

Нанокерамика
Метод 

синтеза
σcer, См/см

Источник
293 K 433 K

La0.95Ca0.05F2.95 МД 2 × 10−6* 3 × 10−4 [20]
Nd0.95Ca0.05F2.95 МД 3 × 10−6 6 × 10−4 [20]
(Ce0.5Pr0.5)0.95Sr0.05F2.95 МД 7.0 × 10−6 1.2 × 10−3 Настоящая работа
Pr0.95Sr0.05F2.95 МД 1.7 × 10−7** − [15]

La0.95Sr0.05F2.95

МД 
МХС
−«−

3 × 10−6

2 × 10−6

6 × 10−8

6 × 10−4

2 × 10−4

3 × 10−5

[20]
[21]
[7]

La0.95Ba0.05F2.95

МД
МХС
−«−
−«−

2 × 10−6*
8 × 10−8

5 × 10−7

2 × 10−7

3 × 10−4

9 × 10−5

1 × 10−4

1.4 × 10−4

[20]
[22]
[23]
[9]

La0.90Ba0.10F2.90

МХС
−«−
−«−
−«−

2 × 10−7

1 × 10−7

5 × 10−7

5 × 10−6

2 × 10−4

6 × 10−5

2.8 × 10−4

1 × 10−3

[22]
[24]
[2]

[25]
Примечание. МД — механическое диспергирование, МХС — механохимический синтез. 
* Экстраполяция. 
** Без нагрева.
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Трехкомпонентный ФТЭ (Ce0.5Pr0.5)0.95Sr0.05F2.95 
обладает более высокой ионной электропровод
ностью, чем двухкомпонентные R0.95M0.05F2.95 
(R = La, Pr, Nd; M = Ca, Sr, Ba). Для изученного 
состава тисонитового  ФТЭ значения проводи-
мости σcer нанокерамики холодного прессования 
при  T  >  350 K превышают уровень  10–4 См/см, 
необходимый для работы химических источни-
ков тока.

Таким образом, наноразмерная керамика со-
става (Ce0.5Pr0.5)0.95Sr0.05F2.95 перспективна для 
использования во  фтор-ионных источниках 
тока. Однако плотность нанокерамики состав-
ляла 84% от  теоретического значения, поэтому 
необходимо продолжить исследования по  син-
тезу высокоплотной (с  плотностью выше 95%) 
наноразмерной керамики  ФТЭ со  структурой 
тисонита.
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