УДК 54.058

ЭФФЕКТИВНЫЙ КОЭФФИЦИЕНТ РАЗДЕЛЕНИЯ В ЗАВИСИМОСТИ ОТ СТЕПЕНИ ДИСТИЛЛЯЦИИ И ТЕМПЕРАТУРЫ

© 2024 г. А. И. Кравченко *, А. И. Жуков

Национальный научный центр "Харьковский физико-технический институт" Национальной академии наук Украины, ул. Академическая, 1, Харьков, 61108 Украина

*e-mail: krwchnko@gmail.com

Поступила в редакцию 06.09.2023 г. После доработки 14.11.2023 г. Принята к публикации 15.11.2023 г.

Показана возможность построения зависимости эффективного коэффициента разделения β от степени дистилляции g и температуры (при заданных значениях давления пара испаряемого вещества, числа Пекле при температуре плавления, энергии активации диффузии примеси и начального коэффициента разделения β_0) через построение зависимости чистоты конденсата от g при заданном β_0 и значениях числа Пекле, соответствующих ряду рассматриваемых температур. Приведен пример расчета указанной зависимости для модельного материала на основе бериллия. Отмечены закономерности названной зависимости.

Ключевые слова: дистилляция, сублимация, эффективный коэффициент разделения, число Пекле, бериллий

DOI: 10.31857/S0002337X24010084, EDN: MHKRSR

ВВЕДЕНИЕ

Дистилляция и сублимация относятся к основным методам получения высокочистых веществ, в связи с чем проявляется интерес к их теоретическим основам [1–11]. В общем случае эти процессы описываются системой уравнений с двумя параметрами: с начальным коэффициентом разделения β_0 и с числом Пекле

$$Pe = \frac{wX}{\rho D},$$

где w — скорость испарения вещества с единицы поверхности, D — коэффициент диффузии примеси, X — размерный фактор испаряемого материала (например, начальная толщина слоя жидкости в тигле), ρ — плотность вещества. Ввиду сложности уравнений их решения не могут быть получены в аналитическом виде, но могут быть найдены численными методами [5—8].

Число Pe зависит от температуры T вследствие температурных зависимостей w(T) и D(T). Как было показано ранее [7–9],

$$\frac{Pe}{Pe_m} = \frac{wD_m}{w_m D},\tag{1}$$

где Pe и Pe_m — числа Пекле при некоторой температуре T и при температуре плавления T_m соответственно, D и D_m — коэффициенты диффузии примеси при T и T_m соответственно, w и w_m — скорости испарения вещества с единицы поверхности при T и T_m соответственно. При этом известен порядок величины D_m (~ 10^{-6} см²/с в твердом теле и ~ 10^{-5} см²/с в жидкости [12]), а температурная зависимость D(T) определяется формулой [7, 8]

$$D = D_m \exp\left[\frac{Q}{R}\left(\frac{1}{T_m} - \frac{1}{T}\right)\right],\tag{2}$$

<i>T</i> , K	<i>р</i> , мм рт. ст. [14]	p/p_m	$(T_m/T)^{1/2}$	$\exp\biggl[\frac{Q}{R}\biggl(\frac{1}{T_m}-\frac{1}{T}\biggr)\biggr]$	Pe/Pe _m
1551	0.03	1	1	1	1
1600	0.06	2.0	0.98	1.22	1.6
1700	0.24	8.0	0.96	1.77	4.3
1800	0.80	26.7	0.93	2.44	10.2
1900	2.32	77.3	0.90	3.29	21.1

Таблица 1. Расчетные данные для материала на основе бериллия ($T_m = 1551 \text{ K}$) со значением $Q/R = 1 \cdot 10^4 \text{ K}$

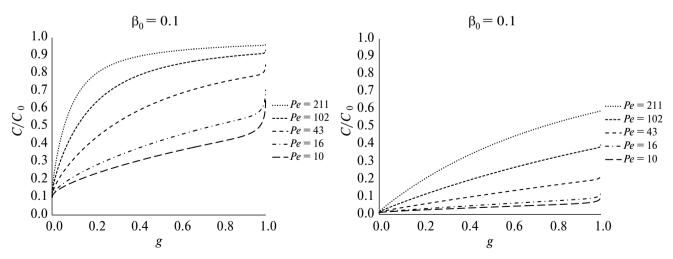
где Q — энергия активации диффузии примеси, R — универсальная газовая константа. С помощью уравнения Ленгмюра [13] выводится формула

$$\frac{w}{w_m} = \frac{p}{p_m} \left(\frac{T_m}{T}\right)^{1/2},\tag{3}$$

где p и p_m — давление пара вещества при T и T_m соответственно (данные о давлении пара веществ могут быть взяты из справочной литературы, например [14]).

В то же время, для описания дистилляции и сублимации применимо простое уравнение с эффективным коэффициентом разделения β , зависящим от степени дистилляции g и числа Pe [6, 9—11]

$$\frac{C}{C_0} = \frac{1 - (1 - g)^{\beta}}{g},\tag{4}$$


где C — усредненная концентрация примеси в конденсате, C_0 — начальная концентрация примеси (β_0 — отношение концентрации

примеси в паре, покидающем поверхность испарения, к ее концентрации в веществе вблизи поверхности испарения). При идеальном перемешивании рафинируемой жидкости Pe = 0, а $\beta = \beta_0$ [6].

Как альтернатива недавно представленного сложного рассмотрения зависимостей $\beta(g)$ и $\beta(T)$ [9, 10] был продолжен поиск более простого способа построения зависимости $\beta(g,T)$ — что и было целью работы. При этом было обращено внимание на то, что графики зависимости C/C_0 от g [6, 9—11], по сути, демонстрируют расхождение эффективного и равновесного коэффициентов разделения.

ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

Отклонение графиков зависимости C/C_0 от g, построенных при $Pe \neq 0$, от графиков, построенных при Pe = 0, зависит от β_0 и Pe: отклонение уменьшается с уменьшением β_0 и Pe. При $\beta_0 \geqslant 0.5$ расхождение заметно при Pe > 1, при $\beta_0 = 0.1$ расхождение заметно только при Pe > 1-10, при $\beta_0 = 0.01$ —

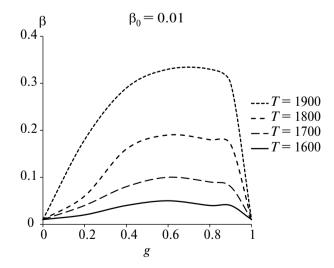
Рис. 1. Зависимости чистоты конденсата от степени дистилляции g материала в процессе с плоской постоянной поверхностью испарения при двух значениях β_0 и различных значениях Pe (C – усредненная концентрация примеси в конденсате, C_0 – начальная концентрация примеси).

Таблица 2. Эффективный коэффициент разделения β в процессе испарения бериллия с примесью (со значением $Q/R = 1 \cdot 10^4$ K) при различных температурах (при $Pe_m = 10$ и 100) в зависимости от степени дистилляции g при различных значениях равновесного коэффициент разделения $β_0$

eta_0	<i>T</i> , K	Pe	C/C_0 при различных g				β при различных g					
			g = 0.2	g = 0.4	g = 0.6	g = 0.8	g = 0.9	g = 0.2	g = 0.4	g = 0.6	g = 0.8	g = 0.9
0.1	1551	10	0.22	0.30	0.36	0.41	0.45	0.19	0.25	0.27	0.25	0.23
	1600	16	0.28	0.37	0.45	0.51	0.55	0.25	0.31	0.34	0.33	0.30
	1700	43	0.42	0.58	0.69	0.75	0.77	0.38	0.52	0.58	0.57	0.51
	1800	102	0.62	0.78	0.85	0.89	0.90	0.57	0.73	0.78	0.77	0.72
	1900	211	0.80	0.90	0.93	0.95	0.99	0.75	0.87	0.94	0.89	0.84
0.01	1551	10	0.02	0.03	0.05	0.06	0.07	0.02	0.02	0.03	0.03	0.03
	1600	16	0.02	0.05	0.07	0.08	0.09	0.02	0.04	0.05	0.04	0.04
	1700	43	0.05	0.10	0.14	0.17	0.19	0.04	0.08	0.10	0.09	0.08
	1800	100	0.11	0.19	0.26	0.32	0.36	0.06	0.16	0.19	0.18	0.17
	1900	211	0.20	0.34	0.44	0.52	0.55	0.18	0.29	0.33	0.33	0.30
0.1	1551	100	0.62	0.78	0.85	0.89	0.90	0.57	0.73	0.78	0.77	0.72
	1800	1020	0.96	0.98	0.99	0.99	0.99	0.91	0.97	0.98	0.98	0.96
0.01	1551	100	0.11	0.19	0.26	0.32	0.36	0.06	0.16	0.19	0.19	0.17
	1800	1020	0.57	0.75	0.83	0.88	0.89	0.52	0.70	0.75	0.76	0.70

при Pe > 10, а при $\beta_0 = 0.001 -$ при Pe > 100 (см. графики [6, 9–11]).

Эффективный коэффициент разделения вычислялся с помощью уравнения (1), преобразованного к виду


образованного к виду
$$\beta = \frac{\ln\left(1 - g\frac{C}{C_0}\right)}{\ln\left(1 - g\right)}. \tag{5}$$

Формула (1) с учетом (2) и (3) преобразовывается в формулу

$$\beta$$
 0.9
 0.8
 0.7
 0.6
 0.5
 0.4
 0.3
 0.2
 0.1
 0
 0.2
 0.4
 0.6
 0.8
 0.7
 0.8
 0.7
 0.8
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 $0.$

$$\frac{Pe}{Pe_m} = \frac{p}{p_m} \left(\frac{T_m}{T}\right)^{1/2} \cdot \frac{1}{\exp\left[\frac{Q}{R}\left(\frac{1}{T_m} - \frac{1}{T}\right)\right]}, \quad (6)$$

которая позволяет вычислить значения Pe для ряда значений T (при заданных значениях параметров T_m , p, p_m , Q и Pe_m) и, используя разработанную ранее методику расчета [6], построить зависимость C/C_0 от g при значениях Pe, соответствующих заданному ряду значений T. После этого с помощью

Рис. 2. Зависимости $\beta(g)$ при различных значениях β_0 и T для материала на основе бериллия при $Q/R = 1 \cdot 10^4$ К и $Pe_m = 10$ (X = 1.4 см).

формулы (5) могут быть вычислены значения β при заданных T и g, т.е. может быть построена зависимость $\beta(T,g)$ при заданном β_0 и заданных параметрах T_m , p, p_m , Q и Pe_m .

Зависимость $\beta(g, T)$ рассматривалась на примере материала на основе бериллия со значением $Q/R = 1 \cdot 10^4$ К. Расчетные данные для такого материала приведены в табл. 1.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Зависимости C/C_0 от g при значениях Pe, соответствующих температурам, указанным в табл. 1 для материала на основе бериллия при двух значениях Pe_m (10 и 100), показаны на рис. 1, а результаты вычисления зависимости $\beta(T,g)$ — в табл. 2. (Для вычисления значений C/C_0 при $Pe_m=100$ и 1020 использовались графики зависимости C/C_0 от g со значением Pe=100 и 1000 (\approx 1020) соответственно из работ [10, 11].) (Можно отметить, что если $g\approx 0$ или $g\approx 1$, то $\beta\approx \beta_0$.) Данные табл. 2 использовались для графического представления зависимостей $\beta(g,T)$, показанных на рис. 2.

Данные табл. 2 и рис. 2 дают представление о характере зависимости $\beta(g, T)$. Коэффициент β растет с ростом g и T. Зависимость $\beta(g, T)$ более заметна при меньшем значении β_0 , большей температуре и большем значении Pe_m . Видно негативное влияние увеличения начальной толщины слоя жидкости X на эффективность рафинирования (для бериллия с $T_m = 1551$ К значение $Pe_m = 10$ соответствует $X \sim 1$ см, а $Pe_m = 100 - X \sim 10$ см).

Можно обратить внимание на зависимость β от Q. Как показывает формула (6), рост Q уменьшает отношение Pe/Pe_m , т. е. сближает графики зависимости $\beta(g)$, построенные при различных температурах при заданном β_0 .

Такая методика построения зависимости $\beta(g, T)$ заметно проще представленной в недавней работе [10] и обеспечивает более надежные результаты расчетов.

ЗАКЛЮЧЕНИЕ

На примере модельного материала "основа — примесь" с заданными параметрами (T_m ,

 p, p_m, Q, Pe_m и β_0) показана возможность построения зависимости $\beta(g, T)$ с использованием предварительно построенной зависимости чистоты конденсата от g при заданном β_0 и значениях числа Пекле, соответствующих ряду рассматриваемых температур.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. *King C.J.* Separation Processes. Second edition. N.Y.: Dover, 2013.
- 2. Девятых Г.Г., Еллиев Ю.Е. Глубокая очистки веществ. М.: Высшая школа, 1990. 192 с.
- 3. Дытнерский Ю.И. Процессы и аппараты химической технологии. Учебник для вузов. Изд. 2. В 2 кн. Ч. 2. Массообменные процессы и аппараты. М.: Химия, 1995. 368 с.
- 4. *Нисельсон Л.А., Ярошевский А.Г.* Межфазовые коэффициенты распределения. Равновесия кристалл жидкость и жидкость пар. М.: Наука, 1992. 399 с.
- 5. *Кириллов Ю.П., Кузнецов Л.А., Шапошни-ков В.А., Чурбанов М.Ф.* Влияние диффузии на глубину очистки веществ дистилляцией // Неорган. материалы. 2015. Т. 51. № 11. С. 1177—1182.
 - https://doi.org/10.7868/S002337X15100085
- 6. *Жуков А.И.*, *Кравченко А.И*. Расчет сублимации с учетом диффузии примеси // Неорган. материалы. 2017. Т. 53. № 6. С. 662—668. https://doi.org/10.1134/S0020168517060161
- 7. *Кравченко А.И.*, *Жуков А.И*. Температурная зависимость диффузионного числа Пекле в процессах сублимации некоторых простых веществ // Неорган. материалы. 2021. Т. 57. № 7. С. 789—795.

https://doi.org/10.1134/S0020168521070101

Kravchenko A.I., Zhukov A.I., Datsenko O.A.

Temperature Dependences of the Peclet Number in Sublimation Processes of Simple Substances // Problems At. Sci. Technol. 2022. № 1. P. 13–16.

https://vant.kipt.kharkov.ua/

8. Кравченко А.И., Жуков А.И. Коэффициенты разделения и числа Пекле в испарительных

- процессах рафинирования веществ с простой основой при температурах вблизи от температур плавления // Неорган. материалы. 2022. Т. 58. № 8. С. 891–897. https://doi.org/10.31857/S0002337X22080073
- 9. *Кравченко А.И., Жуков А.И*. О зависимости эффективного коэффициента разделения от температуры и степени дистилляции // Неорган. материалы. 2023. Т. 59. № 8. С. 921—926.
 - https://doi.org/10.31857/S0002337X23080080

- 10. *Kravchenko A.I.* On Parameters of Evaporation Refining // Mater. Plus. 2023. V. 2. № 2. P. 1–4. https://doi.org/10.37256/mp02010002
- 11. *Бокштейн Б.С., Ярославцев А.Б.* Диффузия атомов и ионов в твердых телах. М.: МИСиС, 2005. 362 с.
- 12. *Пазухин В.А.*, *Фишер А.Я*. Разделение и рафинирование металлов в вакууме. М.: Металлургия, 1969. 204 с.
- 13. Несмеянов А.Н. Давление пара химических элементов. М.: Изд-во АН СССР, 1961. 396 с.