УЛК 666.3-136621.762.34621.762.52

ПОЛУЧЕНИЕ КЕРАМИКИ Si_3N_4 С ДОБАВКОЙ 3 МАС. % Y_2O_3 — Al_2O_3 (2 : 1, 1 : 1, 3 : 5) ЭЛЕКТРОИМПУЛЬСНЫМ ПЛАЗМЕННЫМ СПЕКАНИЕМ

© 2023 г. П. В. Андреев^{1, 2, *}, П. Д. Дрожилкин², Л. С. Алексеева², К. Е. Сметанина², Е. Е. Ростокина¹, С. С. Балабанов¹, М. С. Болдин², А. А. Мурашов², Г. В. Щербак²

Институт химии высокочистых веществ им. Г.Г. Девятых Российской академии наук, Бокс-75, ул. Тропинина, 49, Нижний Новгород, 603137 Россия
 ²Нижегородский государственный университет им. Н.И. Лобачевского, пр. Гагарина, 23, Нижний Новгород, 603022 Россия

 *e-mail: andreev@phys.unn.ru
 Поступила в редакцию 01.12.2022 г.
 После доработки 29.08.2023 г.
 Принята к публикации 30.08.2023 г.

Методами Печини и распылительной сушки были изготовлены порошковые смеси на основе α -Si $_3$ N $_4$ с 3 мас. % спекающей добавки состава Y_2O_3 —Al $_2O_3$ в стехиометрии 2:1,1:1 и 3:5. Изучены четыре образца керамики, изготовленных методом электроимпульсного плазменного спекания порошковых смесей. Спекание проводилось до температуры окончания усадки порошковых смесей со скоростью нагрева 50° С/мин и при нагрузке 70 МПа. Проведен анализ усадки порошковых смесей в процессе спекания, рассчитана энергия активация спекания, измерены плотность, микротвердость и трещиностойкость (вязкость разрушения) образцов керамики. Наибольшая твердость $H_V = 16.5$ ГПа при трещиностойкости $K_{Ic} = 3.8$ МПа м $^{1/2}$ была достигнута для образца с мольным соотношением оксидов $Y_2O_3: Al_2O_3 = 3:5$, спеченного при 1860° С, уплотнение образца при этом составило 99.0%. Шихта для данного образца была синтезирована методом распылительной сушки.

Ключевые слова: нитрид кремния, керамика, электроимпульсное плазменное спекание, порошковая смесь, твердость, трещиностойкость

DOI: 10.31857/S0002337X2308002X, **EDN:** BFNMEE

ВВЕДЕНИЕ

Керамика на основе нитрида кремния (Si_3N_4) характеризуется сочетанием высокой прочности, твердости, износостойкости, коррозийной стойкости и тугоплавкости. Эти свойства также сохраняются при высоких температурах и в агрессивных внешних условиях. Это делает керамику на основе Si_3N_4 одним из перспективных конструкционных материалов [1]. В настоящее время керамические изделия из Si_3N_4 используются в роли критических узлов сложных механизмов во многих отраслях тяжелой промышленности, в нефтехимической промышленности, в энергетическом машиностроении и др. [2].

Ковалентная природа связей в Si_3N_4 является причиной низкой интенсивности протекания диффузионно-контролируемых процессов при спекании (реорганизация, растворение—осаждение—кристаллизация, коалесценция). По этой причине керамика на основе Si_3N_4 традиционно изго-

тавливается в виде композита со спекающей добавкой, облегчающей процесс компактирования [1]. При нагреве спекающая добавка образует на границах зерен Si_3N_4 тонкие слои жидкой фазы, способствующей ускорению диффузионных процессов и уплотнению материала. Особенностью керамики на основе нитрида кремния является растворение исходного порошка, состоящего преимущественно из фазы α - Si_3N_4 , в расплаве спекающей добавки с дальнейшей кристаллизацией в более стабильной и плотной фазе — β - Si_3N_4 . Зерна фазы β - Si_3N_4 в керамике, как правило, имеют форму игл, что положительно сказывается на механических свойствах.

К настоящему времени в технологиях изготовления керамики особый интерес представляют методы скоростного спекания, например, электроимпульсное (искровое) плазменное спекание (ЭИПС). Это связано с возможностью сокращения времени спекания и сохранения в спеченных образцах размера зерен, близкого к размеру ча-

стиц исходного порошка. В последние годы возрастает интерес исследователей к изучению возможностей метода ЭИПС для спекания керамики на основе Si_3N_4 [3, 4].

Также повышаются требования к шихте как фактору, определяющему однородность и физико-механические свойства образцов керамики. Помимо традиционных методов помола и смешения для подготовки шихтовых смесей, возрастает популярность методов "мокрой" химии, обеспечивающих более высокую однородность смешивания [5—7]. При этом остается актуальной задача поиска оптимального состава спекающей добавки с целью получение плотной керамики на основе Si_3N_4 с улучшенными физико-механическими свойствами [8, 9].

Результаты недавних исследований продемонстрировали, что методы "мокрой" химии в сочетании с ЭИПС позволяют получать образцы керамики с плотной и однородной микроструктурой, в т.ч. с небольшим количеством спекающей добавки (вплоть до 3 мас. %) при обеспечении достаточной равномерности ее распределения в шихте [10, 11].

Цель работы заключалась в проведении синтеза шихтовых смесей на основе Si_3N_4 с 3 мас. % спекающей добавки состава Y_2O_3 — Al_2O_3 и получении из нее образцов керамики методом ЭИПС, а также исследовании их механических свойств.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Объектами исследования являлись порошковые смеси на основе промышленного порошка Si_3N_4 с добавкой Y_2O_3 и Al_2O_3 в количестве 3 мас. % в стехиометрических соотношениях, соответствующих иттрий-алюминиевому перовскиту $YAlO_3$ (YAP), иттрий-алюминиевому оксиду в моноклинной модификации $Y_4Al_2O_9$ (YAM) и иттрий-алюминиевому гранату $Y_3Al_5O_{12}$ (YAG). В качестве исходного материала использовался порошок Si_3N_4 (производитель ABCR Gmbh, Германия) с размером частиц <5 мкм и содержанием не менее 90 мас. % α - Si_3N_4 . Синтез порошковых смесей проводился методами "мокрой" химии [7].

Порошковая смесь I-G была изготовлена методом распылительной сушки с использованием смеси золей $Al_5(NO_3)_3(OH)_{12}$ и $Y(OH)_2(CH_3COO)$ с порошком Si_3N_4 . Золь $Al_5(NO_3)_3(OH)_{12}$ получали растворением в азотной кислоте предварительно гидролизованного изопропилата алюминия. Золь $Y(OH)_2(CH_3COO)$ получали диспергированием в уксусной кислоте нанопорошка оксида иттрия,

полученного самораспространяющимся высокотемпературным синтезом. Водная суспензия содержала 52.5 мас. % в пересчете на твердую фазу $\mathrm{Si}_3\mathrm{N}_4$ и YAG. Для стабилизации дополнительно вводили 1.5 мас. % полиакрилата аммония. После перемешивания в планетарной мельнице Pulverisette 6 шарами из оксида иттрия суспензия была высушена методом распылительной сушки при температуре 150°C.

Три порошковых смеси были изготовлены методом Печини с добавлением лимонной кислоты (II). K смеси растворов нитратов иттрия $(Y(NO_3)_3 \cdot 6H_2O_3)$ "х. ч.") и алюминия (Al(NO_3) $_3$ ·9 H_2O , "ч."), взятых в стехиометрических соотношениях, соответствующих соединениям YAG (для смеси II-G), YAP (II-P) и YAM (II-M), добавляли раствор лимонной кислоты ($C_6H_8O_7$: H_2O , "х. ч.") и перемешивали при 80°С. Количество лимонной кислоты выбиралось равным суммарному количеству нитрат-ионов. К полученной смеси добавляли 97 мас. % порошка Si_3N_4 (в пересчете на состав Si_3N_4 - Al_2O_3 - Y_2O_3) и высушивали при постоянном перемешивании при температуре 120°C до состояния густого геля. Полученный гель отжигали при температуре 300°C в течение 1 ч.

Образцы керамики получали методом ЭИПС на установке Dr. Sinter model SPS-625 в вакууме. Порошковые смеси помещали в графитовую прессформу с внутренним диаметром 10.8 мм и нагревали за счет пропускания миллисекундных импульсов электрического тока (до 3 кА). ЭИПС проводили при механической нагрузке 70 МПа до окончания процесса усадки порошковых смесей. Нагрузка к пресс-форме прикладывалась одновременно с началом нагрева. Скорость нагрева составляла 50°С/мин. Изотермическая выдержка при температуре спекания не применялась. Температуру в процессе спекания измеряли оптическим пирометром, сфокусированным на поверхности пресс-формы. Охлаждение образцов проводилось в свободном режиме. Для удаления с поверхности образцов остатков графитовой фольги их отжигали в воздушной печи ЭКПС-10 при температуре 750°С (2 ч).

В процессе ЭИПС с помощью дилатометра установки Dr. Sinter model SPS-625 фиксировалась зависимость усадки порошков от температуры нагрева L(t), которая пересчитывалась в температурную зависимость уплотнения $\rho/\rho_h(t)$ в соответствии с процедурой, описанной в работе [12].

Плотность полученных образцов керамики (р) измеряли методом гидростатического взвешивания в дистиллированной воде на весах Sartorius CPA 225D. Теоретическая плотность композитов

Si₃N₄— Y_x Al_yO_z оценивалась с учетом содержания в системе 3 мас. % Y_3 Al₅O₁₂, YAlO₃ и Y_4 Al₂O₉ с использованием теоретических значений плотностей, полученных из банка данных PDF-2. При расчете теоретической плотности (ρ_{th}) образцов плотность Si₃N₄ принималась равной 3.190 г/см³ (PDF № 01-071-6479, ICSD № 16752), YAlO₃ — 5.351 г/см³ (PDF № 00-033-0041), Y₄Al₂O₉ — 4.525 г/см³ (PDF № 00-033-0040). Таким образом, теоретические плотности принимались равными 3.219, 3.218 и 3.229 г/см³ для образцов I-G и II-G, II-P и II-M соответственно.

Для последующих исследований поверхность образцов подвергалась шлифовке алмазными дисками на станке Struers Secotom-10.

Рентгенофазовый анализ (**РФA**) образцов проводили на дифрактометре Shimadzu XRD-7000 (излучение CuK_{α} , $\lambda=1.54$ Å). Качественный фазовый анализ проводился с использованием банка данных ICDD PDF-2 (2012). Микроструктуру образцов изучали с использованием растровых электронных микроскопов (**РЭМ**) JEOL JSM-6490 и TESCAN Vega 2.

Твердость по Виккерсу (H_V) определяли с помощью микротвердомера Qness 60A+ при нагрузке 20 Н. Минимальный коэффициент трещиностойкости ($K_{\rm Ic}$) определяли методом Палмквиста на основе измерения максимальных длин трещин от углов отпечатка индентора. При расчетах использовался модуль Юнга, равный 300 ГПа для ${\rm Si}_3{\rm N}_4$:

$$K_{\rm Ic} = 0.016 P \sqrt{\frac{E}{c^3 H_V}},$$
 (1)

где c — длина трещины (м), E — модуль Юнга (ГПа), H_V — микротвердость по Виккерсу (ГПа), P — нагрузка (Н).

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

В табл. 1 приведена информация о составах и методах синтеза порошковых смесей на основе $\mathrm{Si}_3\mathrm{N}_4$.

Результаты исследований с использованием РЭМ свидетельствуют о высокой степени однородности порошковых смесей и об отсутствии крупных агломератов спекающей добавки (рис. 1).

Дифрактограммы порошковых смесей незначительно отличаются от дифрактограммы исходного порошка Si_3N_4 : в образцах присутствуют кристаллические фазы α - Si_3N_4 и β - Si_3N_4 . Дифракционные рефлексы, соответствующие оксидным фазам,

Таблица 1. Состав порошковых смесей

Образец	Соотношение Al_2O_3 : Y_2O_3 в спекающей добавке		
I-G	5:3		
II-G	3.3		
II-P	1:1		
II-M	1:2		

Примечание. Доля спекающей добавки в шихте 3 мас. %.

отсутствуют, что позволяет сделать вывод об их аморфном строении. Содержание кристаллической фазы β -Si $_3$ N $_4$ во всех порошковых смесях составляет 10 ± 1 мас. %.

Кривые усадки и скорости усадки, а также зависимости уплотнения от температуры для всех образцов приведены на рис. 2. Кривые усадки и скорости усадки, приведенные на рис. 2а, демонстрируют схожую кинетику спекания для всех образцов. Большие абсолютные значения усадки и скорости усадки для образцов II-М и II-Р связаны с большим объемом засыпки. Для всех образцов характерная температура начала интенсивной усадки составляет около 1500°С. При температуре около 1700°C скорость усадки начинает снижаться, однако не достигает нулевых значений. При температурах 1730—1880°С усадка и скорость усадки вновь начинают резко расти, что, по нашему мнению, соответствует началу разложения Si_3N_4 [11]. Исходя из этого предположения за температуру спекания (окончания усадки) принимались точки минимума скорости усадки (отмечены черными треугольниками на рис. 2а). Измеренные значения относительной плотности свидетельствуют о том, что образцы I-G и II-G, температура спекания которых превысила 1910°C, уплотняются до 99% теоретической плотности, а II-Р и II-М имеют температуру спекания 1760-1820°C и относительную плотность около 89 и 95% соответственно (рис. 26).

Результаты РФА образцов свидетельствуют о том, что они на 100% состоят из фазы β -Si $_3$ N $_4$ (PDF 01-071-0623) (см. рис. 3), т.е. о завершившемся фазовом превращении $\alpha \to \beta$.

На рис. 4 представлены снимки РЭМ образцов керамики. На полированной поверхности образцов II-Р и II-М заметны поры размером более 1 мкм.

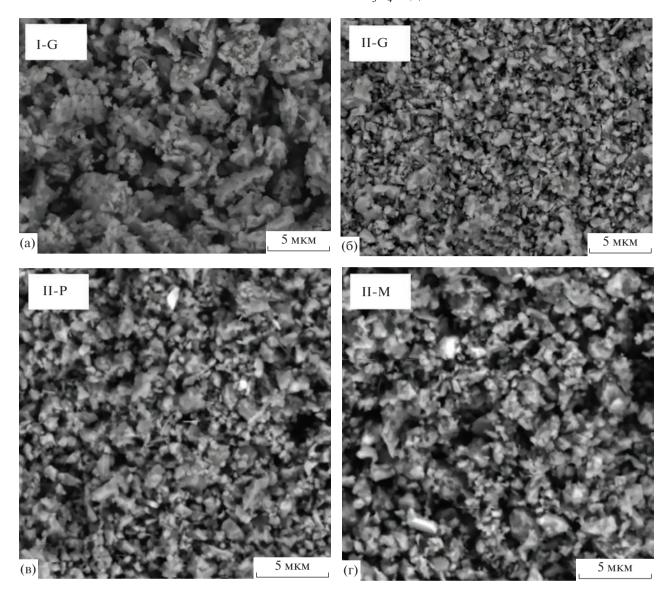


Рис. 1. РЭМ-изображения исходных порошковых шихт.

Образец II-G, несмотря на высокое измеренное значение плотности, имеет достаточно заметные поры размером менее 1 мкм в тройных стыках границ зерен. Из рассмотренных образцов только I-G не имеет видимых пор. При этом на границах зерен, особенно в тройных стыках, распределяется стеклообразная (согласно результатам фазового анализа) фаза спекающей добавки. На снимках образцов I-G и II-G ярко выражена неравноосность зерен Si_3N_4 , что характерно для β - Si_3N_4 .

Температура спекания, значения абсолютной и относительной плотности образцов, а также результаты их механических испытаний приведены в табл. 2.

Результаты измерения механических свойств демонстрируют корреляцию между плотностью и твердостью образцов. Образцы I-G и II-G, обладающие меньшей пористостью, закономерно проявляют сравнимые величины твердости. Трещиностой-кость образца I-G заметно выше, чем остальных.

Ранее на основе анализа кинетики спекания шихт на основе $\mathrm{Si}_3\mathrm{N}_4$ с 8.5 мас. % оксидной спекающей добавки в стехиометрии YAG было показано, что процесс интенсивной усадки при ЭИПС контролируется вязким (пластическим) течением оксидной фазы [10].

Для анализа кинетики высокоскоростного спекания порошков на стадии интенсивной усадки (t > 1200 °C) система рассматривалась в рамках

Таблица 2. Результаты механических испытаний керамических образцов

Образец	t _s , °C	ρ, г/см ³	$ ho/ ho_{th},\%$	$K_{\mathrm{I}c}$, МПа м $^{1/2}$	H_{V} , ГПа
I-G	1880	3.18 ± 0.02	98.9 ± 0.4	5.1 ± 0.4	15.6 ± 0.3
II-G	1860	3.19 ± 0.01	99.0 ± 0.4	3.8 ± 0.4	16.5 ± 0.5
II-P	1730	2.87 ± 0.02	88.9 ± 0.4	3.7 ± 0.3	9.6 ± 0.6
II-M	1780	3.04 ± 0.02	94.5 ± 0.4	3.5 ± 0.3	13.2 ± 0.5

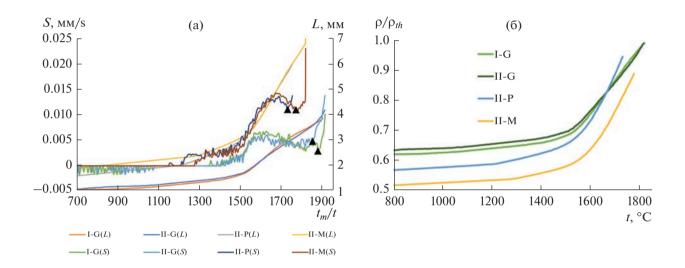
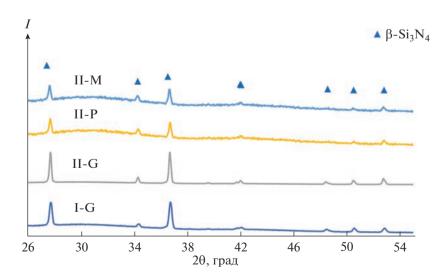



Рис. 2. Графики спекания (а) и уплотнения (б) образцов I-G, II-G, II-P, II-M.

Рис. 3. Рентгеновские дифрактограммы образцов I-G, II-G, II-P, II-M.

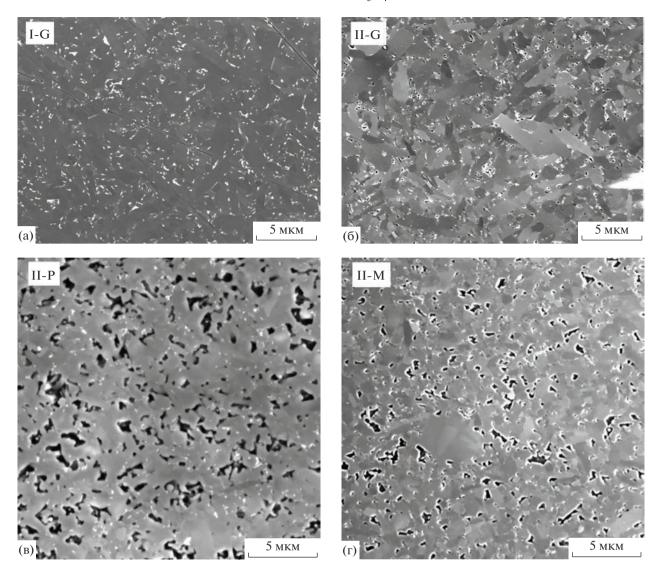
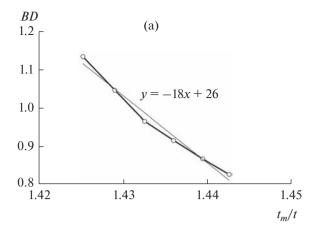
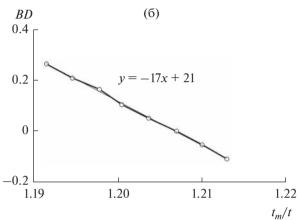
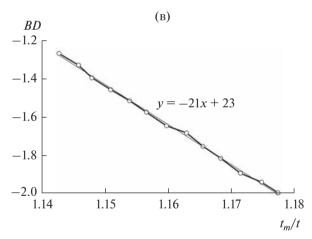


Рис. 4. РЭМ-изображения керамических образцов.


модели диффузионного растворения пор. В этом случае величина энергии активации ЭИПС Q_{S_2} может быть определена по углу наклона зависимости вида [12]:


$$BD \equiv \left(\ln \left(\ln \left(\alpha \frac{\rho}{(\rho - 1)} \right) \right) = f\left(\frac{t_m}{t} \right), \tag{2}$$


где $\alpha = 0.5$ — коэффициент уплотнения прессовки, ρ — относительная плотность, t_m — температура плавления, принимаемая (в зависимости от состава образца) равной температуре плавления YAG, YAM или YAP — 1930, 2020 или 1900°C соответственно.

Зависимости (2) для расчета энергии активации в рамках модели растворения пор для образцов II-G, II-P и II-М представлены на рис. 5.

Анализ полученных результатов показывает, что эффективная энергия активации ЭИПС (mQ_{S_n}) на стадии интенсивной усадки для образцов І-С и II-G составляет $18 \pm 4kT_m$, а для образцов II-Р и II-М — $17 \pm 4kT_m$ и $21 \pm 4kT_m$ соответственно (рис. 5). Несмотря на пересечение доверительных интервалов рассчитанных энергий активации спекания для образцов с добавками YAG, YAM и YAP, средние значения несколько различаются. О различии также свидетельствует явно более крутой вид кривой уплотнения (рис. 26) для образцов ІІ-М (YAM) и II-Р (YAР). Можно предположить, что вязкость расплавов в случае стехиометрии спекающей добавки, соответствующей ҮАМ и ҮАР, ниже, чем для YAG, что снижает энергию активации спекания. Количественные оценки предложить сложно, т.к. необходимо учитывать вклад окис-

Рис. 5. К анализу энергии активации спекания в рамках модели растворения пор на примере образцов II-G (a), II-P (б), II-M (в).

ленного слоя SiO_2 на поверхности частиц Si_3N_4 исходного порошка [13].

ЗАКЛЮЧЕНИЕ

Методами Печини и распылительной сушки получены порошковые смеси на основе нанесенной на поверхность частиц Si_3N_4 спекающей до-

бавки состава $Al_2O_3-Y_2O_3$ в количестве 3 мас. % (в пересчете на оксидную фазу). Соотношение ионов Y^{3+} и Al^{3+} выбрано из расчета существующих стехиометрических фаз иттрий-алюминиевого перовскита $YAlO_3$, иттрий-алюминиевого оксида в моноклинной модификации $Y_4Al_2O_9$ и иттрий-алюминиевого граната $Y_3Al_5O_{12}$.

Методом ЭИПС получены образцы керамики, состоящие из кристаллических частиц β -Si $_3$ N $_4$. Наибольшая твердость ($H_V = 16.5 \pm 0.5$ ГПа) достигнута для образца, спеченного при температуре 1860°C, а наибольшая трещиностойкость ($K_{\rm lc} = 5.1 \pm 0.4$ Мпа м $^{1/2}$) при твердости $H_V = 15.6 \pm 0.3$ ГПа достигнута для образца, спеченного при температуре 1880°C. Порошковые смеси для данных образцов содержали 3 мас. % спекающей добавки в стехиометрии иттрий-алюминиевого граната (Y_3 Al $_5$ O $_12$).

С использованием модели диффузионного растворения пор показано, что образцы, содержащие спекающую добавку, соответствующую $YAlO_3$ и $Y_4Al_2O_9$, имеют меньшую энергию активации спекания, чем образцы, содержащие спекающую добавку в стехиометрии $Y_3Al_5O_{12}$.

ФИНАНСИРОВАНИЕ РАБОТЫ

Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта № 19-33-60084.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Tatarkova M., Tatarko P., Sajgalik P.* Si₃N₄ Ceramics, Structure and Properties // Encyclopedia of Materials: Technical Ceramics and Glasses. 2021. V. 2. P. 109–118. https://doi.org/10.1016/B978-0-12-818542-1.00021-7
- 2. *Klemm H*. Silicon Nitride for High-Temperature Applications // J. Am. Ceram. Soc. 2010. V. 93. № 6. P. 1501–1522. https://doi.org/10.1111/j.1551-2916.2010.03839.x
- Zamula M.V., Kolesnichenko V.G., Stepanenko A.V., Tyschenko N.I., Shyrokov O.V., Borodianska H.Yu., Ragulya A.V. Phase Transformations and Consolidation of Si₃N₄ Ceramics Activated with Yttrium and Silicon Oxides in Spark Plasma Sintering // Powder Metall. Met. Ceram. 2022. V. 60. P. 672–684. https://doi.org/10.1007/s11106-022-00288-8
- 4. Yu J.-J., Sun S.-K., Wei W.-X., Guo W.-M., Plucknett K., Lin H.-T. Continuous and Symmetric Graded Si₃N₄ Ceramics Designed by Spark Plasma Sintering at 15 MPa // Ceram. Int. 2019. V. 45. № 13. P. 16703—16706. https://doi.org/10.1016/J.CERAMINT.2019.05.148
- 5. *Ye C., Yue X., Zong H., Liao G., Ru H.* In-situ Synthesis of YAG@Si₃N₄ Powders with Enhanced Mechanical Properties // J. Alloys Compd. 2018. V. 731. P. 813–821. https://doi.org/10.1016/j.jallcom.2017.10.064

- Ceja-Cardenas L., Lemus-Ruiz J., Jaramillo-Vigueras D., de la Torre S.D. Spark Plasma Sintering of α-Si₃N₄ Ceramics with Al₂O₃ and Y₂O₃ as Additives and Its Morphology Transformation // J. Alloys Compd. 2010. V. 501. № 2. P. 345–351. https://doi.org/10.1016/j.jallcom.2010.04.102
- 7. Андреев П.В., Алексеева Л.С., Ростокина Е.Е., Дрожилкин П.Д., Балабанов С.С., Мурашов А.А., Каразанов К.О. Синтез порошковых композитов на основе Si_3N_4 для электроимпульсного плазменного спекания керамики // Неорган. материалы. 2022. Т. 58. № 10. С. 1134—1140. https://doi.org/10.31857/S0002337X22100013
- 8. Ким К.А., Лысенков А.С., Федоров С.В., Петракова Н.В., Фролова М.Г., Перевислов С.Н., Каргин Ю.Ф. Изучение влияния спекающей добавки CaO—Al₂O₃ (48:52 мас. %) на фазовый состав и свойства керамики на основе Si₃N₄ // Неорган. материалы. 2022. Т. 58. № 8. С. 908—916. https://doi.org/10.1134/s0020168522080040
- 9. *Perevislov S.N.* Investigation of the Phase Composition and Analysis of the Properties of Sintered and Hot-Pressed Materials Based on Silicon Nitride // Refract. Ind. Ceram. 2022. V. 63. P. 66–73. https://doi.org/10.1007/S11148-022-00682-0

- 10. Андреев П.В., Дрожилкин П.Д., Ростокина Е.Е., Балабанов С.С., Алексеева Л.С., Болдин М.С., Мурашов А.А., Щербак Г.В., Гребенев В.В., Каразанов К.О. Изготовление керамических композитов на основе порошка нитрида кремния с осажденной спекающей добавкой // Перспективные материалы. 2022. № 8. С. 76—88. https://doi.org/10.30791/1028-978X-2022-8-76-88
- 11. Andreev P.V., Drozhilkin P.D., Alekseeva L.S., Smetanina K.E., Rostokina E.E., Balabanov S.S., Boldin M.S., Murashov A.A., Shcherbak G.V. Spark Plasma Sintering of Si₃N₄ Ceramics with Y₂O₃ − Al₂O₃ (3−10 wt. %) as Sintering Additive // Coatings. 2023. № 13. P. 240. https://doi.org/10.3390/coatings13020240
- 12. Чувильдеев В.Н., Болдин М.С., Дятлова Я.Г., Румянцев В.И., Орданьян С.С. Сравнительное исследование горячего прессования и высокоскоростного электроимпульсного плазменного спекания порошков $Al_2O_3/ZrO_2/Ti(C,N)$ // Журн. неорган. химии. 2015. Т. 60. № 8. С. 1088—1094. https://doi.org/10.7868/S0044457X1508005X
- Falk L.K.L. Microstructural Development during Liquid Phase Sintering of Silicon Carbide Ceramics // J. Eur. Ceram. Soc. 1997. V. 17. P. 983–994. https://doi.org/10.1016/S0955-2219(96)00198-7