УЛК 546.65.68.95:548.314

ТРОЙНЫЕ ИНТЕРМЕТАЛЛИДЫ $R_{26}(Ru_xIn_{1-x})_{17}$ (R = Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Lu), $Pr_{21}Ru_{8.2}In_5$ И Gd_6Ru_2In С БОЛЬШИМ СОДЕРЖАНИЕМ РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ

© 2023 г. Д. В. Седельников^{1, *}, Ж. М. Куренбаева¹, Е В. Мурашова¹

¹Московский государственный университет им. М.В. Ломоносова, Ленинские горы, 1, Москва, 119991 Россия *e-mail: sedelnikov.denis.96@mail.ru

> Поступила в редакцию 25.11.2022 г. После доработки 27.01.2023 г. Принята к публикации 28.01.2023 г.

В системах R—Ru—In в области с высоким содержанием редкоземельных элементов (>60 ат. %) обнаружен ряд изоструктурных соединений $R_{26}(Ru_xIn_{1-x})_{17}$ (R = Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Lu), которые кристаллизуются в тетрагональной ячейке (P4/mbm) со структурным типом $Sm_{26}(Co_{0.65}Ga_{0.35})_{17}$, а также получены соединения $Pr_{21}Ru_{8.2}In_5$ с тетрагональной ячейкой (I4/mcm) со структурным типом Y_3Rh_2 и Gd_6Ru_2In с ромбической ячейкой (Immm) со структурным типом Ho_6Co_2Ga . Все соединения синтезированы методом высокотемпературного жидкофазного синтеза в электрической дуге из стехиометрических количеств элементарных компонентов. Структуры были определены методом рентгеноструктурного анализа монокристалла и уточнены методом Ритвельда по порошковым рентгенограммам. Соединения $R_{26}(Ru_xIn_{1-x})_{17}$ (R=Dy, Ho, Er, Tm, Lu) существуют в области гомогенности 0.28 < x < 0.47. Все кристаллические структуры полученных соединений построены на основе каркаса из атомов редкоземельных элементов, внутри которого находятся меньшие по размеру атомы рутения и индия. Общим фрагментом всех рассмотренных структур являются колонны различной длины из соединенных общими основаниями тетрагональных призм InR_8 и тетрагональных антипризм RuR_8 . Новые соединения имеют конгруэнтный характер плавления.

Ключевые слова: интерметаллические соединения, микроструктура, кристаллическая структура, рентгеновская дифракция, температура плавления

DOI: 10.31857/S0002337X23040103, EDN: VUHPBG

ВВЕДЕНИЕ

Тройные соединения, содержащие индий, переходный металл и редкоземельный элемент, представляют интерес из-за своих разнообразных физических свойств, особенно тех, которые относятся к сильно коррелированным электронным системам (например, тяжелофермионные сверхпроводники $CeCoIn_5[1]$ и $CeIrIn_5[2, 3]$). Широко исследуются магнитные свойства фаз. богатых Gd, на предмет их возможного применения в качестве хладагентов в магнитных холодильных устройствах [4]. Для систем R-T-In(R-редкоземельный элемент (P39), T - переходный металл)характерно наличие большого числа тройных соединений, особенно в области с высоким содержанием РЗЭ [5]. Взаимодействие индия с переходными и редкоземельными металлами имеет сложный характер из-за различной электронной конфигурации взаимодействующих компонентов, что обуславливает большое разнообразие соединений в таких системах. Имеются сведения о сериях интерметаллидов составов $R_{12}Co_6In$ (R=La, Pr, Nd, Sm) со структурным типом $Sm_{12}Ni_6In$ [6], $R_{14}T_3In_3$ и $R_{14}T_2In_3$ (R=Sc, Y, Gd-Tm, Lu, T=Co, Rh, Ni) со структурными типами $Lu_{14}Co_3In_3$ и $Lu_{14}Co_2In_3$ [7–9], а также R_5Ni_2In (R=Er, Tm) со структурным типом Mo_5SiB_2 [10]. В работе [11] получены индиды лютеция $Lu_{26}T_{17-x}In_x$ с различными переходными металлами (T=Rh, Ir, Pt) со структурным типом $Sm_{26}(Co_{0.65}Ga_{0.35})_{17}$ [12]. Структуры перечисленных соединений построены на основе каркаса из P39, в пустотах которого находятся атомы переходных металлов и индия с высокими координационными числами.

Тройные системы R—Ru—In с индием в качестве p-элемента систематически не исследовались, особенно для P3Э середины и конца ряда. Из индидов рутения с P3Э с содержанием R > 60 ат. % описано несколько соединений: La₂₁Ru_{9+x}In_{5-x} (x = 1.2) [13] со структурой, производной от Y₃Rh₂ [14],

 $Ce_{23}Ru_7In_4$ [15] и ряд интерметаллидов с легкими РЗЭ R_4RuIn (R = La-Sm) [16].

В работе [17] были изучены фазовые равновесия в системе Dy—Fe—In при температуре 870 К и получено соединение $Dy_6Fe_{1.72}In$ со структурным типом Ho_6Co_2Ga . Интересным фактом является наличие в структуре $Dy_6Fe_{1.72}In$ укороченных расстояний Fe—Fe (2.294(1) Å), направленных вдоль наибольшего параметра элементарной ячейки c. При этом расстояния Fe—Fe вдоль других направлений имеют обычные значения, близкие к сумме атомных радиусов.

В настоящей работе впервые получен ряд соединений в системе R-Ru-In со структурным типом $Sm_{26}(Co_{0.65}Ga_{0.35})_{17}$ для R=Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Lu, а также в ходе исследования получены соединения $Pr_{21}Ru_{8.2}In_5$ и Gd_6Ru_2In . Определены границы областей гомогенности, температуры плавления, кристаллические структуры новых соединений.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез тройных интерметаллических соединений проводили из стехиометрических количеств элементарных компонентов: R (99.85 мас. %), Ru (99.96 мас. %), In (99.9999 мас. %) методом высокотемпературного жидкофазного синтеза в электрической дуге в атмосфере аргона [18]. Для удаления следовых количеств газов использовали геттер из циркония. Навески образцов плавили трижды, переворачивая после каждой плавки. для полного взаимодействия компонентов. После этого полученные образцы помещали в кварцевую ампулу, вакуумировали и отжигали в трубчатых печах при температуре 600°C в течение 30 сут до установления равновесия. Затем ампулы с отожженными образцами закаливали в ледяную воду. Полученные образцы исследовали методами локального рентгеноспектрального анализа (ЛРСА), рентгеновской дифракции на порошке (РФА) и монокристалле (РСА), дифференциального термического анализа (ДТА).

ЛРСА выполняли на электронном микроскопе Carl Zeiss LEO EVO 50XVP с EDX-спектрометром, оборудованном анализатором INCA Energy 450 (Oxford Instruments). Ускоряющее напряжение составляло 20 кВ. Погрешность измерения для каждого элемента не превышала 0.5 ат. %.

Образцы для РФА снимали на автодифрактометре STOE STADI Р в геометрии "на пропускание" ($CuK_{\alpha 1}$ -излучение, Ge (111)-монохроматор), оборудованном линейным детектором PSD. Съемку проводили в интервале углов $5^{\circ} \le 2\theta \le 90^{\circ}$ с шагом 0.01° и экспозицией 10 с на точку. Индицирование рентгенограмм и расчет параметров элементарных ячеек выполняли с использованием пакета программ STOE WinXpow [19]. При отсутствии мо-

нокристаллов удовлетворительного качества структуры новых соединений уточняли методом Ритвельда, используя экспериментальную порошковую дифрактограмму и известную структурную модель аналога или модель, полученную из PCA. Расчеты проводили с помощью пакета программ FULLPROF [20, 21]. В качестве структурной модели использовали координаты атомов известных прототипов ($Sm_{26}(Co_{0.65}Ga_{0.35})_{17}$, $Dy_6Fe_{1.72}In$).

Кристаллы для РСА отбирали из расколотых отожженных образцов и изучали на автодифрактометрах Bruker APEX2, APEX3 (MoK_{α} -излучение, графитовый монохроматор). Определение кристаллических структур проводили с использованием прямых методов (SHELXS) и уточняли методом наименьших квадратов в анизотропном приближении (SHELXL) [22]. Поглощение учитывали с помощью программы SADABS [23]. Основные кристаллографические характеристики и результаты уточнения структур приведены в табл. 1, 2. Проекции кристаллических структур, рисунки полиэдров и другие структурные детали были выполнены с применением программы DIAMOND [24].

Структурная информация депонирована в объединенную структурную базу CCDC/FIZ (Karlsruhe), депозиты: $2215021 - Nd_{26}(Ru_xIn_{1-x})_{17}$, $2215022 - Pr_{21}Ru_{8,2}In_5$, $2215023 - Gd_6Ru_2In$.

Дифференциальный термический анализ проводили на сканирующем калориметре производства фирмы NEITZCH Leading Thermal Analysis STA 449 F1 Jupiter Platinum RT в атмосфере гелия высокой степени чистоты. Образцы массой до 30 мг нагревали в интервале температур от 25 до 1200°C со скоростью 20 град/мин.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Ряд полученных соединений $R_{26}(Ru_xIn_{1-x})_{17}$ (R = Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Lu) является первым среди индидов рутения, принадлежащим к структурному типу $Sm_{26}(Co_xGa_{1-x})_{17}$. Кристаллическую структуру рассматриваемых соединений можно представить в виде колонн из соединенных гранями квадратных призм и антипризм с атомами РЗЭ в вершинах. Более крупные атомы индия заполняют тетрагональные призмы, а позиции внутри тетрагональных антипризм заселены атомами рутения. Укладка из этих призматических единиц имеет строго определенный порядок: одна призма, за которой следуют 4 антипризмы. Координационные полиэдры остальных атомов представляют собой сильно искаженные 8- и 9-вершинники с атомами РЗЭ в вершинах (рис. 1).

Кристаллическая структура соединения была определена по монокристальным данным для $Nd_{26}(Ru_xIn_{1-x})_{17}$ (x=0.47). По полученной структурной модели было проведено уточнение кристаллических структур по методу Ритвельда для

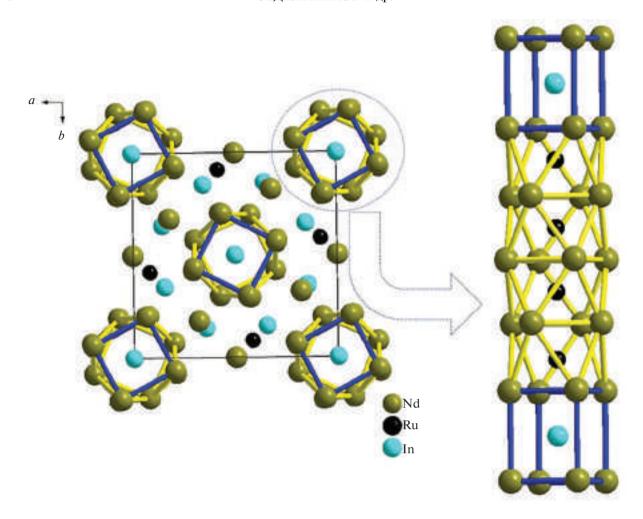
Таблица 1. Кристаллографические данные и основные параметры уточнения кристаллических структур $Nd_{26}(Ru_xIn_{1-x})_{17}$ (x = 0.47), $Pr_{21}Ru_{8.2}In_5$ и Gd_6Ru_2In (монокристальные данные)

Формула соединения	Nd ₂₆ Ru ₈ In ₉	$Pr_{21}Ru_{8.2}In_5$	Gd ₆ Ru ₂ In
Молекулярная масса	5592.18	4361.98	1260.46
Состав по ЛРСА, ат. %	$Nd_{60}Ru_{19}In_{21}$		Gd ₆₇ Ru ₂₂ In ₁₁
Сингония	Тетрагональная	Тетрагональная	Ромбическая
a, Å	12.1415(4)	11.9789(12)	9.4350(16)
b, Å	12.1415(4)	11.9789(12)	9.6038(16)
c, Å	16.2303(6)	25.326(3)	10.4204(17)
V, Å ³	2392.61(18)	3634.1(8)	944.2(3)
Пр. гр.	P4/mbm	I4/mcm	Immm
Z	2	4	4
$D_{ m pac}$ ч, г/см 3	7.762	7.972	8.867
μ , mm^{-1}	34.271	33.890	46.900
F(000)	4706	7379	2084
Размер кристалла, мм	$0.12 \times 0.08 \times 0.04$	$0.12 \times 0.06 \times 0.04$	$0.12 \times 0.08 \times 0.06$
θ_{min} $-\theta_{max}$	2.372-30.519	2.404-27.942	2.884-28.374
	$-17 \le h \le 17$	$-15 \le h \le 15$	$-12 \le h \le 12$
Диапазон <i>hkl</i>	$-17 \le k \le 14$	$-15 \le k \le 15$	$-12 \le k \le 12$
	-23 ≤ <i>l</i> ≤ 23	-33 ≤ <i>l</i> ≤ 33	-13 ≤ <i>l</i> ≤ 13
Коррекция поглощения	Полуэмпирическая из эквивалентов		
Max, min пропускания	0.0326, 0.0061 0.0533, 0.0172		0.0137, 0.0013
Метод уточнения	Полноматричный МНК по F^2		
Собрано отражений	36602	67971	8571
Независимых отражений	2003	1193	693
$c I > 2\sigma(I), R_{int}$	1640, 0.0597	1180, 0.0480	583, 0.0501
Количество уточняемых параметров	85	54	33
GoF	1.289	1.273	1.609
$R1, wR2 [I > 2\sigma(I)]$	0.042, 0.080	0.040, 0.094	0.047, 0.115
R1, wR2 (все отражения)	0.054, 0.083	0.040, 0.094 0.055, 0.117	
$\Delta \rho_{max}, \Delta \rho_{min}, e \mathring{A}^3$	1.735, -1.776	1.621, -1.753	2.292, -2.510

всех полученных соединений. Параметры и объемы элементарных ячеек для всего ряда соединений уменьшаются от Pr к Lu вследствие лантаноидного сжатия (табл. 3, рис. 2).

Пример такого уточнения для интерметаллида $\mathrm{Dy}_{26}(\mathrm{Ru}_x\mathrm{In}_{1-x})_{17}$ представлен на рис. 3. На вставке показана микроструктура этого образца. Основная фаза $\mathrm{Dy}_{26}(\mathrm{Ru}_x\mathrm{In}_{1-x})_{17}$ (x=0.47) представлена светло-серым цветом на микроструктуре, а небольшие черные вкрапления являются оксофторидами диспрозия. Согласно данным ЛРСА, образцы с другими РЗЭ получились практически однофазными.

Для изоструктурных соединений $R_{26}(Ru_xIn_{1-x})_{17}$ (R=Dy, Ho, Er, Tm, Lu) установлено, что они существуют в области гомогенности. Для определения границ областей гомогенности этих интерметаллидов были приготовлены образцы составов R60Ru10In30, R60Ru15In25, R60Ru20In20 для R=Dy, Ho, Er, Tm, Lu. На рис. 4 представлены фрагменты рентгенограмм для образцов с лютецием. По мере увеличения содержания рутения и уменьшения содержания индия в образце происходит сдвиг самых интенсивных отражений в сторону больших углов 2θ , что свидетельствует об


Таблица 2. Координаты атомов и эквивалентные изотропные параметры атомного смещения U_{eq} (монокристальные данные) в структурах $Nd_{26}(Ru_xIn_{1-x})_{17}$ (x=0.47), $Pr_{21}Ru_{8,2}In_5$ и Gd_6Ru_2In

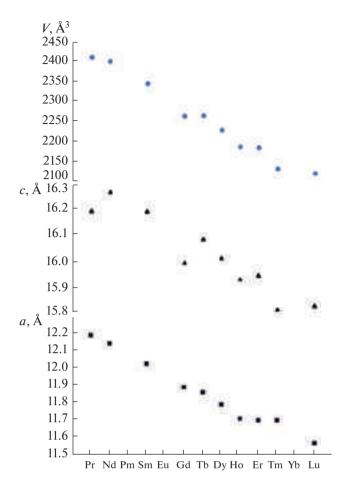
Атом	Позиции Уайкова	X	у	z	U_{eq} , Å ²
		Nd ₂₆	Ru ₈ In ₉		
Nd(1)	16 <i>l</i>	0.5698(1)	0.7024(1)	0.8755(1)	0.028(1)
Nd(2)	8 <i>g</i>	0.4199(1)	0.2979(1)	1/2	0.032(1)
Nd(3)	16 <i>l</i>	0.3015(1)	0.4248(1)	0.6846(1)	0.035(1)
Nd(4)*	8 <i>k</i>	0.1718(2)	0.3282(2)	0.0163(2)	0.025(1)
Nd(4B)*	4g	0.1504(14)	0.3496(14)	0	0.050(6)
Nd(5)*	8 <i>k</i>	0.4940(20)	-0.0060(20)	0.6090(1)	0.042(3)
Nd(6)*	8 <i>k</i>	0.0242(2)	0.4758(2)	0.8195(2)	0.029(1)
Nd(6B)*	4 <i>f</i>	0	1/2	0.8442(8)	0.036(3)
In(7)	8 <i>k</i>	0.3377(1)	0.1623(1)	0.7030(1)	0.028(1)
In(8)	4g	0.0907(1)	0.5907(1)	0	0.028(1)
In(9)	2 <i>a</i>	1/2	1/2	0	0.030(1)
In(10)	4h	0.3444(1)	-0.1556(1)	1/2	0.032(1)
Ru(11)	4 <i>e</i>	1/2	1/2	0.7870(1)	0.027(1)
Ru(12)	4 <i>e</i>	1/2	1/2	0.5930(1)	0.027(1)
Ru(13)*	8 <i>k</i>	0.1962(2)	0.3038(2)	0.8198(2)	0.025(1)
Ru(14)*	8 <i>k</i>	0.1665(2)	0.3335(2)	0.8230(3)	0.025(1)
	I I		Ru _{8.2} In ₅		· ′
Pr(1)	32 <i>m</i>	0.0792(1)	0.2024(1)	0.1916(1)	0.027(1)
Pr(2)	32 <i>m</i>	0.2090(1)	0.0766(1)	0.0726(1)	0.022(1)
Pr(3)*	16 <i>l</i>	0.0158(6)	0.5158(6)	0.2477(5)	0.033(3)
Pr(4)	8 <i>h</i>	0.6521(1)	0.1521(1)	0	0.024(1)
Pr(5)	8 <i>g</i>	0	1/2	0.1031(1)	0.030(1)
In(1)	16 <i>l</i>	0.1569(1)	0.6569(1)	0.1863(1)	0.028(1)
In(2)	4 <i>c</i>	0	0	0	0.023(1)
Ru(1)*	16 <i>l</i>	0.6880(1)	0.1880(1)	0.1094(1)	0.032(1)
Ru(2)	8 <i>h</i>	0.0964(1)	0.5964(1)	0	0.025(1)
Ru(3)	8 <i>f</i>	0	0	0.1266(1)	0.024(1)
Ru(4)	4 <i>a</i>	0	0	1/4	0.024(1)
	ı	\mathbf{Gd}_{6}	Ru ₂ In		Į.
Gd(1)	8 <i>n</i>	0.2838(1)	0.1847(1)	0	0.036(1)
Gd(2)	8 <i>m</i>	0.3116(1)	0	0.3268(1)	0.036(1)
Gd(3)	81	0	0.2002(1)	0.2391(1)	0.037(1)
Ru(1)	4 <i>j</i>	1/2	0	0.1189(4)	0.050(1)
Ru(2)	4g	0	0.3308(3)	0	0.037(1)
In(1)	$\frac{3}{2c}$	1/2	1/2	0	0.035(1)
In(2)	2a	0	0	0	0.038(1)

^{*} Заселенность позиций атомами в $Nd_{26}Ru_8In_9$: Nd(4)-0.42, Nd(4B)-0.16, Nd(5)-0.5, Nd(6)-0.42, Nd(6B)-0.16, Ru(13)-0.58, Ru(14)-0.42; в $Pr_{21}Ru_{8.2}In_5$: Pr(3)-0.25, Ru(1)-0.8.

изменении параметров элементарной ячейки $Lu_{26}(Ru_xIn_{1-x})_{17}$ в области гомогенности. При этом, согласно правилу Вегарда, параметры a и c уменьшаются при увеличении концентрации рутения,

аналогичные зависимости прослеживаются для других соединений РЗЭ $R_{26}(Ru_xIn_{1-x})_{17}$ (R=Dy, Ho, Er, Tm). Протяженность области гомогенности у соединений $R_{26}(Ru_xIn_{1-x})_{17}$ практически одинако-

Рис. 1. Кристаллическая структура $Nd_{26}(Ru_xIn_{1-x})_{17}$.


ва, составляет 8 ат. %, согласно ЛРСА исследованных образцов, и лежит в пределах 0.28 < x < 0.47.

Температуры плавления новых соединений были определены по результатам дифференциального термического анализа (табл. 3). Температу-

ры плавления соединений $R_{26}(Ru_xIn_{1-x})_{17}$ увеличиваются в ряду от празеодима к лютецию. Согласно ДТА, соединения не претерпевают фазовых переходов до плавления. Рентгенофазовый анализ образцов, охлажденных после плавления,

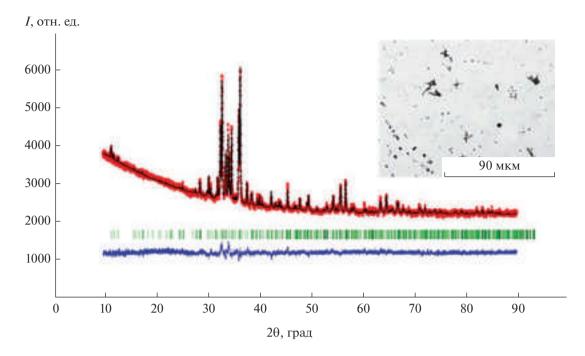
Таблица 3. Параметры и объемы элементарных ячеек, температуры плавления соединений $R_{26}(Ru_xIn_{1-x})_{17}$ (x=0.47)

R	a, Å	c, Å	V, Å ³	t _{ππ} , °C
	и, 11	С, 11	V, A	л _{пл} , с
Pr	12.2050(17)	16.195(5)	2412.5(7)	754(1)
Nd	12.1549(19)	16.267(4)	2403.3(5)	812(1)
Sm	12.0377(20)	16.193(5)	2346.5(6)	823(1)
Gd	11.9022(13)	15.998(5)	2266.4(6)	941(1)
Tb	11.8721(15)	16.087(3)	2267.4(4)	1031(1)
Dy	11.8011(10)	16.018 (2)	2230.8(3)	1046(1)
Но	11.7186(16)	15.937(6)	2188.6(7)	1054(1)
Er	11.7092(9)	15.9520(20)	2187.1(3)	1070(1)
Tm	11.6165(9)	15.823(3)	2135.2(3)	1117(1)
Lu	11.5790(5)	15.8365(11)	2123.25(16)	1150(1)

Рис. 2. Закономерность изменения параметров и объемов элементарных ячеек соединений $R_{26}(Ru_xIn_{1-x})_{17}$.

демонстрирует тот же фазовый состав, что и до плавления, что свидетельствует о конгруэнтном характере плавления интерметаллидов $R_{26}(Ru_xIn_{1-x})_{17}$. На рис. 5 представлена ДСК-кривая образца $Dy_{26}(Ru_xIn_{1-x})_{17}$. Появление небольшого пика после начала плавления, вероятно, связано с присутствием оксофторида диспрозия в исследуемом образце (рис. 3), который разлагается при температуре 1075° C [25].

В ходе исследования образца с высоким содержанием РЗЭ Pr66Ru23In11 методом ДТА был получен монокристалл неизвестного соединения и определена его структура. В результате PCA было установлено, что состав соединения — $Pr_{21}Ru_{8.2}In_5$, а его структура является производной от структуры двойного интерметаллида Y_3Rh_2 (рис. 6).

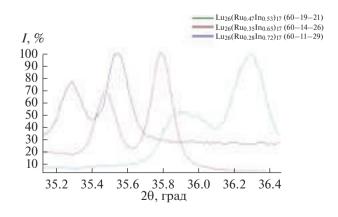

Соединение $Pr_{21}Ru_{8.2}In_5$ кристаллизуется в тетрагональной ячейке с пр. гр. I4/mcm. Результаты монокристального эксперимента и кристаллографические данные полученного соединения представлены в табл. 1, 2. Одна из позиций атома рутения в структуре Ru(1) заселена не полностью, а только на 80%. Атом празеодима Pr(3) в отличие от

аналогичного атома своего прототипа Y₃Rh₂ смещен из позиции 4а (табл. 2). Структуру соединения можно представить в виде вертикальных колонн из квадратных призм и антипризм, соединенных четырехугольными основаниями. Внутри призм находятся атомы индия, а внутри антипризм — атомы рутения, в вершинах многогранников находятся атомы празеодима. В расположении призм и антипризм прослеживается определенный порядок: квадратные призмы отделены друг от друга колонной из трех антипризм. Координационные полиэдры атомов рутения и индия, находящихся между этими колоннами, представляют собой искаженные многогранники с атомами празеодима в вершинах: Ru1 находится внутри искаженной тригональной призмы, Ru2 находится внутри искаженной тетрагональной антипризмы, In1 — внутри искаженного десятивершинника (рис. 7).

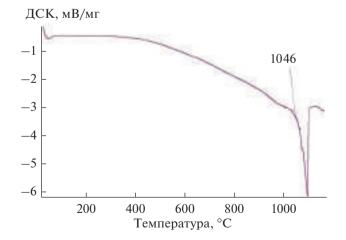
В процессе исследования системы Gd-Ru-In получено новое соединение Gd₆Ru₂In в образце состава Gd67Ru22In11. Соединение Gd₆Ru₂In кристаллизуется в орторомбической ячейке с пр. гр. *Immm* со структурным типом Ho₆Co₂Ga. Структура была определена из монокристального эксперимента (табл. 1, 2). Полученная структурная модель была уточнена по методу Ритвельда (рис. 8). Атомы в структуре тройного интерметаллида Gd₆Ru₂In распределены по семи кристаллографически независимым позициям, три из которых занимают атомы РЗЭ, лве занимают атомы рутения и две — атомы индия (табл. 2). В структуре можно выделить колонны из тетрагональных призм и антипризм, внутри которых расположены атомы индия и рутения соответственно. Кроме этого, часть атомов рутения расположены в тригональных призмах, образуя фрагменты типа AlB₂, а часть атомов индия, расположенных в центрах икосаэдров, объединяются с ними общими ребрами. В вершинах многогранников находятся атомы гадолиния (рис. 9).

Согласно ЛРСА, основной фазой в образце с гадолинием является фаза состава Gd66Ru22In11, что соответствует Gd_6Ru_2In . В образце обнаружены еще 2 фазы с атомными составами: Gd72Ru27In и Gd66Ru18In16. Фаза состава Gd66Ru18In16 соответствует известному в литературе тройному соединению Gd_4RuIn с высоким содержанием РЗЭ. Вторая примесная фаза является твердым раствором на основе одного из двойных соединений в системе Gd-Ru с высоким содержанием гадолиния Gd_3Ru . Однако на рентгенограмме не обнаружено отражений, соответствующих этим фазам, ввиду их малого содержания в образце.

Методом ДТА была определена температура плавления соединения Gd_6Ru_2In (рис. 10). Соединение не претерпевает фазовых переходов до плавления (867°С) и фазовый состав охлажденного образца после термической обработки иденти-

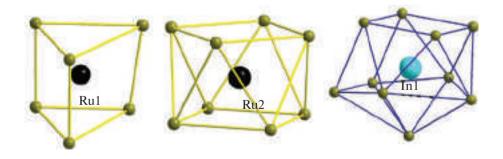

Рис. 3. Экспериментальная (красная линия), теоретическая (черная линия) рентгенограммы и разностные кривые (синие линии) для образца $\mathrm{Dy}_{26}(\mathrm{Ru}_x\mathrm{In}_{1-x})_{17}$ (x=0.47), полосками зеленого цвета обозначены позиции Брэгга; на вставке приведена микроструктура образца с диспрозием.

чен исходному, что свидетельствует о конгруэнтном характере плавления образца. На ДСК-кривой наблюдается небольшой пик выше 900°С, появление которого может быть связано с присутствием в образце оксофторида гадолиния, разлагающегося при температуре 932°С [26].


Структуры всех рассмотренных соединений имеют общий фрагмент: колонны из тетрагональных призм InR_8 и тетрагональных антипризм RuR_8 различной длины, соединенных общими основаниями. Полученные соединения $R_{26}(Ru_xIn_{1-x})_{17}$ и $Pr_{21}Ru_{8,2}In_5$ дополняют известную из литературы

серию соединений E.Parthé $A_{5n+6}B_{3n+5}$ (n=3,4) [27, 28] и являются ее новыми представителями (рис. 11). Структура Gd_6Ru_2In , несмотря на то что содержит колонны из тетрагональных призм и двух антипризм, не относится к этой серии с n=2.

В бинарных представителях серии E.Parthé квадратные призмы и антипризмы заполнены либо переходным металлом, либо p-элементом. В структурах соединений W_5Si_3 [29], Y_3Rh_2 [30], $Yb_{36}Sn_{23}$ [31] характерной особенностью является наличие коротких расстояний металл—металл,


Рис. 4. Фрагменты рентгенограмм $Lu_{26}(Ru_xIn_{1-x})_{17}$ (x=0.47), $Lu_{26}(Ru_xIn_{1-x})_{17}$ (x=0.35), $Lu_{26}(Ru_xIn_{1-x})_{17}$ (x=0.28).

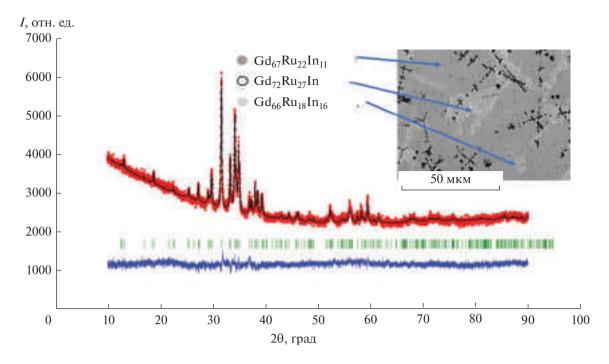
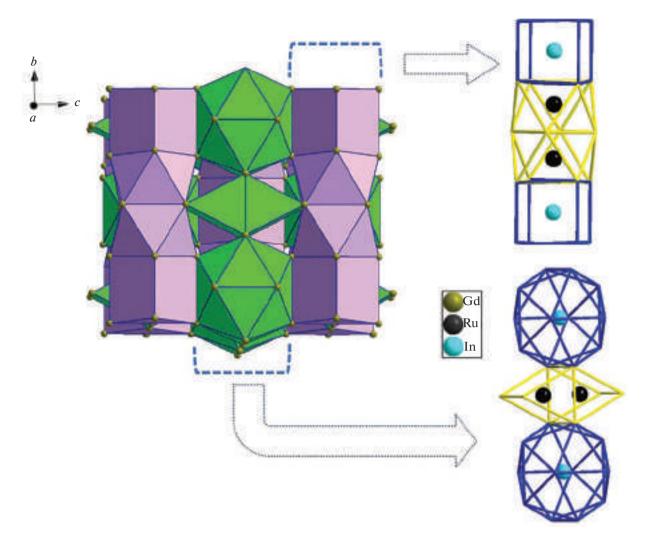

Рис. 5. ДСК-кривая образца $\mathrm{Dy}_{26}(\mathrm{Ru}_x\mathrm{In}_{1-x})_{17}$ (x=0.47).

Рис. 6. Кристаллическая структура $Pr_{21}Ru_{8,2}In_5$.

Рис. 7. Координационные полиэдры атомов рутения и индия в структуре $Pr_{21}Ru_{8,2}In_5$.

Рис. 8. Экспериментальная (красная линия), теоретическая (черная линия) рентгенограммы и разностные кривые (синие линии) для образца состава $Gd_{67}Ru_{22}In_{11}$, полосками зеленого цвета обозначены позиции Брэгга; на вставке приведена его микроструктура.

которые меньше суммы не только атомных, но даже ковалентных радиусов (табл. 4).


тройного соелинения структуре $Nd_{26}(Ru_{0.47}In_{53})_{17}$ расстояния Nd-Ru в антипризмах меньше суммы атомных радиусов Nd (r = 1.82 Å), Ru (r = 1.34 Å) и лежат в пределах 2.9699(10) - 3.0665(11) Å, а между атомами рутения в соседних антипризмах – превышают сумму их атомных радиусов и составляют 3.018(3) и 3.150(2)Å (см. Приложение). В тетрагональных призмах межатомные расстояния Nd—In составляют 3.2922(6) Å, что меньше суммы атомных радиусов атомов Nd (r = 1.82 Å) и In (r = 1.63 Å) [30]. Наличие таких коротких межатомных расстояний свидетельствует об усилении химического взаимодействия между атомами Nd и Ru, Nd и In при введении третьего компонента.

В структуре $Pr_{21}Ru_{8.2}In_5$ расстояния Pr1-Ru3, Pr1-Ru4, Pr2-Ru3 и Pr2-In2, в тетрагональных

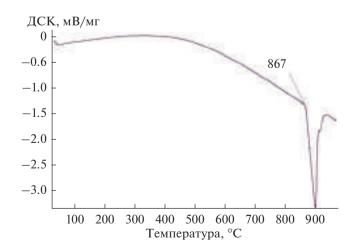

призмах и антипризмах составляют соответственно 3.0806(13), 2.9941(7), 2.9978(11) и 3.3287(7) Å, что меньше суммы атомных радиусов Pr (r = 1.83 Å) и Ru, Pr и In. При этом расстояния между атомами рутения Ru3-Ru4, центрирующими соседние полиэдры, превышают сумму атомных радиусов рутения и составляют 3.1248(19) Å. Интересно отметить, что в двойном соединении У₃Rh₂ из серии E. Parthé, структура которого лежит в основе структуры тройного соединения $Pr_{21}Ru_{8,2}In_5$, в указанных колоннах из призм и антипризм межатомные расстояния Rh-Y также меньше суммы соответствующих атомных радиусов (табл. 4). Аномально короткие расстояния Pr-Ru встречаются в тригональных призмах, центрированных атомом рутения Ru1, которые находятся между колоннами из призм и антипризм (рис. 7). Межатомные расстояния Pr1-Ru1 и Pr4-Ru1 меньше суммы не только атомных, но даже ковалентных радиусов ато-

Таблица 4. Межатомные расстояния (*d*) в бинарных соединениях — представителях серии E. Parthé, атомные и ковалентные радиусы атомов [32]

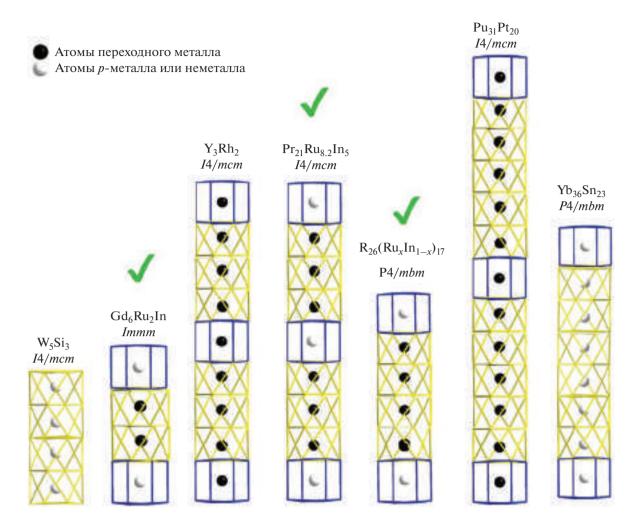

Соединение	d, Å	Атом	Ковалентные радиусы, Å	Атомные радиусы, Å
W ₅ Si ₃	W-W = 2.48(2)	W	1.30	1.37
Yb ₃₆ Sn ₂₃	Yb-Yb = 3.242(4)	Yb	1.70	1.94
Y_3Rh_2	Rh-Y = 2.71(1)	Y	1.62	1.78
		Rh	1.25	1.34

Рис. 9. Кристаллическая структура Gd_6Ru_2In .

Рис. 10. ДСК-кривая образца $\mathrm{Gd_6Ru_2In}$.

Рис. 11. Сравнение одинаковых структурных фрагментов в соединениях, полученных в настоящей работе и известных из литературы.

мов Pr (r = 1.65 Å), Ru (r = 1.24 Å) и составляют 2.7850(16) и 2.837(2) Å соответственно.

В структуре Gd_6Ru_2 In присутствуют укороченные расстояния в колоннах из призм и антипризм. В тетрагональных призмах расстояния между атомами индия и гадолиния лежат в пределах 3.1468(13)-3.2119(13) Å, что меньше суммы атомных радиусов Gd (r=1.80 Å) и In (r=1.63 Å). В антипризмах, центрированных атомами Ru2, межатомные расстояния Ru-Gd лежат в диапазоне 2.7892(19)-3.0227(19) Å, что меньше суммы атомных радиусов Gd (r=1.8 Å) и Ru (r=1.34 Å), при этом расстояние Gd3-Ru2, равное 2.7892(19) Å, меньше суммы даже ковалентных радиусов атомов Gd (r=1.61 Å) и Ru (r=1.24 Å).

В структуре известного из литературы соединения $\mathrm{Dy_6Fe_{1.72}In}$ были обнаружены укороченные расстояния Fe—Fe (2.294(1) Å), а в структуре исследованного в настоящей работе интерметаллического соединения $\mathrm{Gd_6Ru_2In}$, которое ему изоструктур-

но, расстояния между атомами рутения вдоль параметра c элементарной ячейки составляют 2.478(8) Å, что меньше суммы атомных радиусов атома Ru и близко к сумме ковалентных радиусов атомов Ru. При этом расстояния между атомами Ru в других направлениях имеют обычные значения. Такое уменьшение межатомных расстояний может указывать на значительное химическое связывание между атомами переходного металла.

ЗАКЛЮЧЕНИЕ

Получены и структурно охарактеризованы с помощью методов рентгеновской дифракции тройные интерметаллические соединения: $R_{26}(Ru_xIn_{1-x})_{17}(R=Pr,Nd,Sm,Gd,Tb,Dy,Ho,Er,Tm,Lu),Pr_{21-}Ru_{8.2}In_5$ и Gd_6Ru_2In . Все структуры полученных соединений имеют общий фрагмент, который представляет собой колонны различной длины из тетра-

гональных призм и антипризм из атомов РЗЭ с индием и рутением в центре соответственно.

Для всех представленных структур характерно наличие укороченных расстояний металл—металл: Nd—Ru, Nd—In, Pr—Ru, Pr—In, Gd—Ru, Gd—In, а в структуре Gd_6Ru_2In присутствует укороченное расстояние Ru—Ru, что может указывать на наличие значительного химического связывания между этими атомами. При этом расстояния между атомами Ru и In в структурах имеют обычные значения. Все полученные соединения имеют конгруэнтный характер плавления.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена в рамках госзадания (№АААА-A21-121011590083-9) по теме "Фундаментальные основы создания металлических и композиционных материалов".

БЛАГОДАРНОСТЬ

Экспериментальные данные для рентгеноструктурного анализа получены на оборудовании ЦКП ИОНХ РАН.

Авторы благодарят С.Е. Филиппову за помощь в проведении термического анализа образцов.

СПИСОК ЛИТЕРАТУРЫ

- Petrovic C., Pagliuso P.G., Hundley M.F., Movshovich R., Sarrao J.L., Thompson J.D., Fisk Z., Monthoux P. Heavy-Fermion Superconductivity in CeCoIn₅ at 2.3 K // J. Phys.: Condens. Matter. 2001. V. 13. № 17. P. 337—342. https://doi.org/10.1088/0953-8984/13/17/103
- Petrovic C., Movshovich R., Jaime M., Pagliuso P.G., Hundley M.F., Sarrao J.L., Fisk Z., Thompson J.D. A New Heavy-Fermion Superconductor CeIrIn₅: a Relative of the Cuprates? // Europhys. Lett. 2001. V. 53. № 3. P. 354–359. https://doi.org/10.1209/epl/i2001-00161-8
- 3. *Moshopoulou E.G., Fisk Z., Sarrao J.L., Thompson J.D.*Crystal Growth and Intergrowth Structure of the New Heavy Fermion Materials CeIrIn₅ and CeRhIn₅ // J. Solid State Chem. 2001. V. 158. № 1. P. 25–33. https://doi.org/10.1006/jssc.2000.9052
- 4. Canepa F., Napoletano M., Fornasini M.L., Merlo F. Structure and Magnetism of Gd₂Co₂Ga, Gd₂Co₂Al and Gd₁₄Co₃In_{2.7} // J. Alloys Compd. 2002. V. 345. № 1–2. P. 42–49. https://doi.org/10.1016/S0925-8388(02)00395-X
- 5. Kalychak Y.M., Zaremba V.I., Pöttgen R., Lukachuk M., Hoffmann R.-D. Rare Earth-Transition Metal-Indides // Gschneider K.A., Pecharsky V.K., Bünzli J.-C. Handbook on the Physics and Chemistry of Rare Earths. Amsterdam. Elsevier, 2005. V. 34. № 218. P. 1–133.
- Калычак Я.М., Заремба В.И., Степьен-Дамм Дж., Галаджун Я.В., Аксельруд Л.Г. Кристаллическая структура Sm₁₂Ni₆In и родственных соединений // Кристаллография. 1998. Т. 43. С. 17—20. https://doi.org/10.1134/1.170758

- Заремба В.И., Калычак Я.М., Завали П.Ю. Кристаллическая структура R₁₄Co₂In₃ // Кристаллография. 1992. Т. 37. № 2. С. 352—355.
- 8. Lukachuk M., Galadzhun Y.V., Zaremba R.I., Dzevenko M.V., Kalychak Y.M., Zaremba R.I., Rodewald U.Ch.,
 Pöttgen R. New Rare Earth Metal-Rich Indides
 RE₁₄Ni₃In₃ (RE = Sc, Y, Gd−Tm, Lu) Synthesis and
 Crystal Chemistry // J. Solid State Chem. 2005. V. 178.
 № 9. P. 2724–2733.
 https://doi.org/10.1016/j.jssc.2005.06.021
- Zaremba R.I., Pöttgen R. Rare Earth Metal-Rich Indides RE₁₄Rh_{3-x}In₃ (RE=Y, Dy, Ho, Er, Tm, Lu) // J. Solid State Chem. 2007. V. 180. № 9. P. 2452–2458. https://doi.org/10.1016/j.jssc.2007.06.005
- 10. Lukachuk M., Kalychak Y.M., Dzevenko M., Pöttgen R. On the Crystal Chemistry of $Tm_2Ni_{1.896(4)}In$, $Tm_{2.22(2)}Ni_{1.81(1)}In_{0.78(2)}$, $Tm_{4.83(3)}Ni_2In_{1.17(3)}$, and Er_5Ni_2In // J. Solid State Chem. 2005. V. 178. № 4. P. 1247−1253. https://doi.org/10.1016/j.issc.2004.11.023
- 11. *Gulay N.L., Kösters J., Reimann M.-K., Kalychak Y.M., Pöttgen R.* Lu₂₆T_{17-x}In_x (T = Rh, Ir, Pt) First Indium Intermetallics with Sm₂₆Co₁₁Ga₆-Type Structure // Z. Naturforsch., B: Chem. Sci. 2022. V. 77. № 10. P. 735—741. https://doi.org/10.1515/znb-2022-0111
- 12. Ярмолюк Я.П., Гринь Ю.Н., Олеш О.М. Кристаллическая структура соединений $R_{26}Ga_xCo_{17-x}$ (R = La, Ce, Pr, Nd, Sm) и $R_{26}Ga_xNi_{17-x}$ (R = Ce, Pr, Nd, Sm) // Кристаллография. 1980. Т. 25. № 2. С. 248—255.
- 13. Tursina A.I., Cherviakov S.G., Noël H., Chernyshev V.V., Seropegin Y.D. Lanthanum Ruthenium Indide, La₂₁Ru_{9+x}In_{5-x} (x = 1.2) // Acta Crystallogr., Sect. E: Struct. Rep. Online. 2010. V. 66. P. i40. https://doi.org/10.1107/S1600536810014509
- 14. *Moreau J.M., Paccard D., Parthe E.* The Tetragonal Crystal Structure of R_3Rh_2 Compounds with R=Gd, Tb, Dy, Ho, Er, Y // Acta Crystallogr., Sect. B: Struct. Sci. 1976. V. 32. P. 1767–1771. https://doi.org/10.1107/S0567740876006365
- 15. Шаблинская К.В., Грибанова В.А., Марушина Е.В., Куренбаева Ж.М., Мурашова Е.В. Тройные интерметаллические соединения церия со структурой La₂₃Ni₇Mg₄ // Матер. всерос. науч. конф. с международным участием "II Байкальский материаловедческий форум". Т. 1. (29 июня—5 июля) Россия: БНЦ СО РАН Улан-Удэ, 2015. С. 136—137.
- Tappe F., Schwickert C., Linsiger S., Pöttgen R. New Rare Earth-Rich Aluminides and Indides with Cubic Gd₄RhIn-Type Structure // Monatsh. Chem. 2011. V. 142. P. 1087–1095. https://doi.org/10.1007/s00706-011-0622-3
- 17. Demchyna M., Belan B., Manyako M., Akselrud L., Gagor A., Dzevenko M., Kalychak Y. Phase Equilibria in the Dy–Fe–In System and Crystal Structure of Dy₆Fe_{1.72}In // Intermetallics. 2013. V. 37. P. 22–26. https://doi.org/10.1016/j.intermet.2013.01.010
- 18. *Мурашова Е.В., Куренбаева Ж.М.* Синтез и кристаллическая структура новых тройных интерметаллидов системы Ce—Ru—Ga с известными структурными типами // Неорган. материалы. 2019. Т. 55. № 8. С. 833—840. https://doi.org/10.1134/S0002337X19080104

- 19. STOE WINXPOW, Version 2.24. Stoe & Cie GmbH, Germany, Darmstadt, 2007.
- 20. Rodriguez-Carvajal J. FULLPROF: a Program for Rietveld Refinement and Pattern Matching Analysis // Abstracts of the Satellite Meeting on Powder Diffraction of the XV Congress of the IUCr. Toulouse. 1990. P. 127.
- Roisnel T., Rodriguez-Carvajal J. Materials Science Forum // Proceedings of the European Powder Diffraction Conference (EPDIC7). 2000. P. 118.
- 22. *Sheldrick G.M.* Crystal Structure Refinement with SHELXL // Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 2015. V. 71. № 1. P. 3–8. https://doi.org/10.1107/S2053229614024218
- 23. Sheldrick G.M. SADABS Bruker Nonius Area Detector Scaling and Absorption Correction. University of Göttingen, 2004.
- 24. *Brandenburg K.* DIAMOND. Release 3.2k. Crystal Impact Gmbh, Bonn. 2014.
- De Kozak A., Samouel M., Erb A. Le Système DyF₃— Dy₂O₃ // Rev. Chim. Miner. 1980. V. 17. P. 440–444.
- 26. De Kozak A., Samouel M., Chrétien A. Les Systèmes GdF_3 -MF (M = K, Rb, Cs) et GdF_3 -Gd₂O₃ // Rev. Chim. Miner. 1973. V. 10. P. 259–271.
- 27. Le Roy J., Moreau J.M., Paccard D., Parthé E. Rare Earth-Iridium Compounds with Pu₅Rh₃ and Y₃Rh₂

- Structure Types: Members of a New Structural Series with Formula $R_{5n+6}T_{3n+5}$ // J. Less-Common Met. 1980. V. 76. № 1–2. P. 131–135. https://doi.org/10.1016/0022-5088(80)90016-8
- 28. Tappe F., Schappacher F.M., Langer T., Schellenberg I., Pöttgen R. Solid Solutions $RE_{16}Rh_{11-x}Z_x$ (RE = La, Ce, Pr, Nd, Sm; Z = Ga, Zn, Cd, In, Sn, Sb, Pb, Bi) Centrosymmetric <math>n = 2 Variants of Parthé's Homologous Series $A_{5n+6}B_{3n+5}$ // Z. Naturforsch., B: Chem. Sci. 2012. V. 67. P. 594–604. https://doi.org/10.5560/znb.2012-0070
- 29. *Aronsson B*. The Crystal Structure of Mo₅Si₃ and W₅Si₃ // Acta Chem. Scand. 1955. V. 9. № 7. P. 1107–1110.
- 30. *Moreau J.M., Paccard D., Parthé E.* The Tetragonal Crystal Structure of R₃Rh₂ Compounds with R = Gd, Tb, Dy, Ho, Er, Y // Acta Crystallogr., Sect. B: Struct. Sci. 1976. V. 32. P. 1767–1771. https://doi.org/10.1107/S0567740876006365
- 31. *Leon-Escamilla E.A., Corbett J.D.* Solid State Compounds with Tin-Tin Bonding. Yb₃₆Sn₂₃: A Novel Compound Containing Oligomeric Tin Anions // Inorg. Chem. 1999. V. 38. № 4. P. 738–743. https://doi.org/10.1021/ic980861x
- 32. *Emsley J.* The Elements. Oxford: Oxford University Press, 1999. P. 255.