- PII
- 10.31857/S0002337X24060134-1
- DOI
- 10.31857/S0002337X24060134
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 60 / Issue number 6
- Pages
- 756-764
- Abstract
- Неорганические материалы, Синтез, микроструктура и диэлектрические свойства модифицированной керамики на основе твердых растворов (K0.5Na0.5)NbO3–SrZrO3
- Keywords
- Date of publication
- 16.10.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 21
References
- 1. Valant M. Electrocaloric Materials for Future Solid-State Rfrigeration Technologies // Progr. Mater. Sci. 2012. V. 57. P. 980–1009. https://doi.org/:10.1016/j.pmatsci.2012.02.001
- 2. Bai Y., Han X., Ding K., Qiao L. Electrocaloric Refrigeration Cycles with Large Cooling Capacity in Barium Titanate Ceramics near Room Temperature // Energy Technol. 2017. V. 5. P. 703–707. https://doi.org/10.1002/ente.201600456
- 3. Ozbolt M., Kitanovski A., Tusek J., Poredos A. Electrocaloric Refrigeration: Thermodynamics, State of the Art and Future Perspectives // Int. J. Refrig. 2014. V. 40. P. 174–188. https://doi.org/10.1016/j.ijrefrig.2013.11.007
- 4. Lu S.-G., Zhang Q. Electrocaloric Materials for Solid-State Refrigeration // Adv. Mater. 2009. V. 21. P. 1983–1987. https://doi.org/10.1002/adma.200802902
- 5. Axelsson A.-K., Goupil F. Le, Valant M., Alford N.M. Electrocaloric Effect in Lead-Free Aurivillius Relaxor Ferroelectric Ceramics // Acta Mater. 2017. V. 124. P. 120–126. https://doi.org/10.1016/j.actamat.2016.11.001
- 6. Weyland F., Acosta M., Koruza J., Breckner P., Rödel J., Novak N. Criticality: Concept to Enhance the Piezoelectric and Electrocaloric Properties of Ferroelectrics // Adv. Funct. Mater. 2016. V. 26. P. 7326–7333. https://doi.org/10.1002/adfm.201602368
- 7. Mischenko A.S., Zhang Q., Scott J.F., Whatmore R.W., Mathur N.D. Giant Electrocaloric Effect in Thin-Film PbZr 0.95 Ti 0.05 O 3 // Science. 2006. V. 311. P. 1270–1271. https://doi.org/10.1126/science.1123811
- 8. Suchaneck G., Gerlach G. Lead-Free Relaxor Ferroelectrics for Eelectrocaloric Cooling // Mater. Today: Proceed. 2016. V. 3. P. 622–631. https://doi.org/10.1016/j.matpr.2016.01.100
- 9. Grünebohm A., Ma Y.B., Marathe M., Xu B.X., Albe K., Kalcher C., Meyer K.C., Shvartsman V.V., Lupascu D.C., Ederer C. Origins of the Inverse Electrocaloric Effect // Energy Technol. 2018. V. 6. P. 1491–1511. https://doi.org/10.1002/ente.201800166
- 10. Samantaray K.S., Amin R., Rini E., Bhaumik I., Mekki A., Harrabi K., Sen S. Defect Dipole Induced Improved Electrocaloric Effect in Modified NBT-6BT Lead-Free Ceramics // J. Alloys Compd. 2022. V. 903. Р. 163837. https://doi.org/10.1016/j.jallcom.2022.163837
- 11. Luo L., Jiang X., Zhang Y., Li K. Electrocaloric Effect and Pyroelectric Energy Harvesting of (0.94-x) Na 0.5 Bi 0.5 TiO 3 -0 .06BaTiO 3 -xSrTiO 3 Ceramics // J. Eur. Ceram. Soc. 2017. V. 37. P. 2803–2812. http://dx.doi.org/10.1016/j.jeurceramsoc.2017.02.047
- 12. Srikanth K., Vaish R. Enhanced Electrocaloric, Pyroelectric and Energy Storage Performance of BaCe x Ti 1-x O 3 Ceramics // J. Eur. Ceram. Soc. 2017. V. 37. P. 3927–3933. http://dx.doi.org/10.1016/j.jeurceramsoc.2017.04.058
- 13. Kimmel A., Gindele O., Duffy D., Cohen R. Giant Electrocaloric Effect at the Antiferroelectric-to-Ferroelectric Phase Boundary in Pb(Zr x Ti 1-х )O 3 // Appl. Phys. Lett. 2019. V. 115. Р. 023902. https://doi.org/10.1063/1.5096592
- 14. Directive 2002/95/EC of the European Parliament and of the Council of 27 January 2003 on the restriction of the use of certain hazardous substances in electrical and electronic equipment // Offic. J. Eur. Union L 37. 2003. V. 46. P. 19–23. http://data.europa.eu/eli/dir/2002/95/oj
- 15. Yang Z., Du H., Jin L. and Poelman D. High-Performance Lead-Free Bulk Ceramics for Electrical Energy Storage Applications: Design Strategies and Challenges // J. Mater. Chem. A. 2021. V. 9. P. 18026–18085. https://doi.org/10.1039/d1ta04504k
- 16. Wu J. Perovskite Lead-Free Piezoelectric Ceramics // J. Appl. Phys. 2020. V. 127 Р. 190901. https://doi.org/10.1063/5.0006261
- 17. Panda P.K. Review: Environmental Friendly Lead-Free Piezoelectric Materials // J. Mater. Sci. 2009. V. 44. P. 5049–5062. https://doi.org/10.1007/s10853-009-3643-0
- 18. Rödel J., Jo W., Seifert T.P., Anton E.–M., Granzow T., Damjanovic D. Perspective of the Development of Lead-Free Piezoceramics // J. Am. Ceram. Soc. 2009. V. 92. P. 1153–1177. https://doi.org/10.1111/j.1551- 2916.2009.03061.x
- 19. Bernard J., Bencan A., Rojac T., Holc J., Malic B., Kosec M. Low Temperature Sintering of (K 0.5 Na 0.5 )NbO 3 Ceramics // J. Am. Ceram. Soc. 2008. V. 91. P. 2409–2411. https://doi.org/10.1111/j.1551-2916.2008.02447.x
- 20. Kumar R., Singh S. Enhanced Electrocaloric Effect in Lead-Free 0 .9(K 0.5 Na 0.5 )NbO 3 −0 .1Sr(Sc 0.5 Nb 0.5 )O 3 Ferroelectric Nanocrystalline Ceramics // J. Alloys Compd. 2017. V. 723. P. 589–594. https://dx.doi.org/10.1016/j.jallcom.2017.06.252
- 21. Liu Z., Fan H., Lei S., Ren X., Long C. Duplex Structure in (K 0.5 Na 0.5 )NbO 3 − SrZrO 3 Ceramics with Temperature-Stable Dielectric Properties // J. Eur. Ceram. Soc. 2017. V. 37. P. 115–123. https://dx.doi.org/10.1016/j.jeurceramsoc.2016.07.024
- 22. Kumar R., Singh S. Enhanced Electrocaloric Response and Energy-Storage Properties in Lead-Free (1−x) (K 0.5 Na 0.5 )NbO 3 − xSrZrO 3 Nanocrystalline Ceramics // J. Alloys Compd. 2018. V. 764. P. 289–294. https://doi.org/10.1016/j.jallcom.2018.06.083
- 23. Politova E.D., Golubko N.V., Kaleva G.M., Mosunov A.V., Sadovskaya N.V., Stefanovich S.Yu., Kiselev D.A., Kislyuk A.M., Chichkov M.V., Panda P.K. Structure, Ferroelectric and Piezoelectric Properties of KNN-Based Perovskite Ceramics // Ferroelectrics. 2019. V. 538 P. 45–51. https://doi.org/10.1080/00150193.2019.1569984
- 24. Kołodziejczak-Radzimska A. and Jesionowski T. Zinc Oxide—from Synthesis to Application: A Review // Materials. 2014. V. 7. P. 2833–2881. https://doi.org/10.3390/ma7042833
- 25. Louër D., Weigel D., Louboutin R. Méthode Directe de Correction des Profils de Raies de Diffraction des Rayons X. I. Méthode Numérique de Déconvolution // Acta Crystallogr., Sect. A. 1969. V. 25. P. 335–338. https://doi.org/10.1107/s0567739469000556
- 26. Louboutin R., Louër D. Méthode Directe de Correction des Profils de Raies de Diffraction des Rayons X. III. Sur la Recherche de la Solution Optimale Lors de la Déconvolution // Acta Crystallogr., Sect. A. 1972. V. 28. P. 396–400. https://doi.org/10.1107/S056773947200107X
- 27. Le Bail A., Louër D. Smoothing and Validity of Crystallite-Size Distributions from X-ray Line-Profile Analysis // J. Appl. Crystallogr. 1978. V. 11. P. 50–55. https://doi.org/10.1107/S0021889878012662
- 28. Zhurov V.V., Ivanov S.A. PROFIT Computer Program for Processing Powder Diffraction Data on an IBM PC with a Graphic User Interface // Crystallogr. Rep. 1997. V. 42. P. 202–206.
- 29. Калева Г. М., Политова Е. Д., Иванов С. А., Мосунов А. В., Стефанович С.Ю., Садовская Н.В. Синтез, структура, диэлектрические и нелинейные оптические свойства керамики системы (K 0.5 Na 0.5 )NbO 3 − BaZrO 3 // Неорган. материалы. 2023. Т. 59. № 2. С. 208–215. https://doi.org/10.31857/S0002337X23020082
- 30. Kurtz S.K., Perry T.T. A Powder Technique for the Evaluation of Nonlinear Optical Materials // J. Appl. Phys. 1968. V. 39. № 8. P. 3798–3813. https://doi.org/10.1109/JQE.1968.1075108.