RAS Chemistry & Material ScienceНеорганические материалы Inorganic Materials

  • ISSN (Print) 0002-337X
  • ISSN (Online) 3034-5588

Смачивание и работа адгезии расплава стекла Ge28Sb12Se60 к различным конструкционным материалам

PII
10.31857/S0002337X24050118-1
DOI
10.31857/S0002337X24050118
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 60 / Issue number 5
Pages
627-634
Abstract
Неорганические материалы, Смачивание и работа адгезии расплава стекла Ge28Sb12Se60 к различным конструкционным материалам
Keywords
Date of publication
01.05.2024
Year of publication
2024
Number of purchasers
0
Views
36

References

  1. 1. Zakery A., Elliott S.R. Optical Properties and Applications of Chalcogenide Glasses: A Review // J. Non-Cryst. Solids. 2003. V. 330. P. 1–12. https://doi.org/10.1016/j.jnoncrysol.2003.08.064
  2. 2. Snopatin G.E., Shiryaev V.S., Churbanov M.F., Plotnichenko V.G., Dianov E.M. High-Purity Chalcogenide Glasses for Fiber Optics // Inorg. Mater. 2009. V. 45. P. 1439–1460. https://doi.org/10.1134/S0020168509130019
  3. 3. Bae D.-S., Yeo J.-Bin, Lee H.-Yong. A Study on a Production and Processing Technique for a GeSbSe Aspheric Lens with a Mid-infrared Wavelength Band // J. Korean Chem. Soc. 2013. V. 62. P. 1610–1615. https://doi.org/10.3938/jkps.62.1610
  4. 4. Grayson M., Krueper G., Xu B., Hjelme D., Gopinath J.T., Park W. GeSbSe Devices for Mid-Infrared Optical Sensing // Optical Sensors and Sensing Congress 2022 (AIS, LACSEA, Sensors, ES), Technical Digest Series (Optica Publishing Group, 2022), Р. SM4E.2. https://doi.org/10.1364/SENSORS.2022.SM4E.2
  5. 5. Kadono K., Kitamura N. Recent Progress in Chalcogenide Glasses Applicable to Infrared Optical Elements Manufactured by Molding Technology // J. Ceram. Soc. Jpn. 2022. V. 130. P. 584–589. https://doi.org/10.2109/jcersj2.22079
  6. 6. Parnell H., Furniss D., Tang Z., Fang Y., Benson T.M., Canedy C.L., Kim C.S., Kim M., Merritt C.D., Bewley W.W., Vurgaftman I., Meyer J.R., Seddon A.B. High Purity Ge-Sb-Se/S Step Index Optical Fibers // Opt. Mater. Express. 2019. V. 9. P. 3616–3626. https://doi.org/10.1364/OME.9.003616
  7. 7. Kaswan A., Kumari V., Patidar D., Saxena N.S., Sharma K. Kinetics of Phase Transformations and Thermal Stability of GexSe70Sb30-x (x = 5, 10, 15, 20) Chalcogenide Glasses // New J. Glass Ceram. 2013. V. 3. P. 99–103. https://doi.org/10.4236/njgc.2013.34016.
  8. 8. Carcreff J., Cheviré F., Lebullenger R., Gautier A., Chahal R., Adam J.L., Calvez L.T., Brilland L., Galdo E., Coq D.L., Renversez G., Troles J. Investigation on Chalcogenide Glass Additive Manufacturing for Shaping Mid-Infrared, Optical Components and Microstructured Optical Fibers // Crystals. 2021. V. 11. P. 1–12. https://doi.org/10.3390/cryst11030228
  9. 9. Simon A.A., Badamchi B., Subbaraman H., Sakaguchi Y., Jones L., Kunold H., Rooyen I.J., Mitkova M. Introduction of Chalcogenide Glasses to Additive Manufacturing: Nanoparticle Ink Formulation, Inkjet Printing, and Phase Change Devices Fabrication // Sci. Rep. 2021. V. 11. P. 14311. https://doi.org/10.1038/s41598-021-93515-y
  10. 10. Baudet E., Ledemi Y., Larochelle P., Morency S., Messaddeq Y. 3D-Printing of Arsenic Sulfide Chalcogenide Glasses // Opt. Mater. Express. 2019. V. 9. P. 2307–2317. https://doi.org/10.1364/OME.9.002307
  11. 11. Shiryaev V.S., Kosolapov A.F., Pryamikov A.D., Snopatin G.E., Churbanov M.F., Biriukov A.S., Kotereva T.V., Mishinov S.V., Alagashev G.K., Kolyadin A.N. Development of Technique for Preparation of As2S3 Glass Preforms for Hollow Core Microstructured Optical Fibers // J. Optoelectron. Adv. Mater. 2014. V. 16. P. 1020–1025.
  12. 12. Mishinov S.V., Stepanov B.S., Velmuzhov A.P., Shiryaev V.S., Lashmanov E.N., Potapov A.M., Evdokimov I.I. Wettability of Stainless Steel with a Ge28Sb12Se60 Glass Melt and Its Contact Adhesion Strength // J. Non-Cryst. Solids. 2022. V. 578. P. 121351. https://doi.org/10.1016/j.jnoncrysol.2021.121351
  13. 13. Faltejsek P., Joska Z., Pokorný Z., Dobrocký D., Studený Z. Effect of Nitriding on the Microstructure and Mechanical Properties of Stainless Steels // Manuf. Technol. 2019. V. 19. P. 745–748. https://doi.org/10.21062/ujep/365.2019/a/1213-2489/MT/19/5/745
  14. 14. Slima S.B. Ion and Gas Nitriding Applied to Steel Tool for Hot Work X38CrMoV5 Nitriding Type: Impact on the Wear Resistance // Mater. Sci. Appl. 2012. V. 3. P. 640–644. http://dx.doi.org/10.4236/msa.2012.39093
  15. 15. Shaikhutdinova L.R., Khairetdinov E F., Khusainov Yu.G. Effect of Ion Nitriding on the Structural and Phase Composition and Mechanical Properties of High-Speed Steel R6M5 after SPD // Met. Sci. Heat Treat. 2020. V. 62. P. 263–268. https://doi.org/10.1007/s11041-020-00546-9
  16. 16. Abdel-Moneim N.S., Mellor C.J., Benson T.M., Furniss D., Seddon A.B., Fabrication of Stable, Low Optical Loss Rib-Waveguides Via Embossing of Sputtered Chalcogenide Glass-Film on Glass-Chip // Opt. Quantum Electron. 2015. V. 47. P. 351–361. https://doi.org/10.1007/s11082-014-9917-z
  17. 17. Cha D.H., Kim H., Hwang Y., Jeong J. Ch, Kim J. Fabrication of Molded Chalcogenide-Glass Lens for Thermal Imaging Applications // Appl. Opt. 2012. V. 51. P. 5649–5656. https://opg.optica.org/ao/abstract.cfm?URI=ao-51-23-5649
  18. 18. Boyd K., Ebendorff-Heidepriem H., Monro T.M., Munch J. Surface Tension and Viscosity Measurement of Optical Glasses Using a Scanning CO2 Laser // Opt. Mater. Express. 2012. V. 2. P. 1101–1110. https://doi.org/10.1364/OME.2.001101
  19. 19. Мишинов С.В., Чурбанов М.Ф., Ширяев В.С. Смачивание, поверхностное натяжение и работа адгезии расплавов стекол As2S3 и As2Se3 к кварцевому стеклу // Физ. хим. стекла. 2016. Т. 42. № 6. С. 713–720. https://doi.org/10.1134/S108765961606016X
  20. 20. Мельниченко Т.Д., Феделеш В.И., Мельниченко Т.Н., Сандитов Д.С., Бадмаев С.С., Дамдинов Д.Г. О приближенной оценке поверхностного натяжения расплавов халькогенидных стекол // Физ. хим. стекла. 2009. Т. 35. № 1. С. 40–54. https://doi.org/10.1134/S1087659609010052
  21. 21. Churbanov M.F., Mishinov S.V., Shiryaev V.S., Ketkova L.A. Contamination of Glassy Arsenic Sulfide by SiO2 Particles During Melt Solidification in Silica Glassware // J. Non-Cryst. Solids. 2018. V. 480. P. 3–7. http://dx.doi.org/10.1016/j.jnoncrysol.2017.04.006
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library