RAS Chemistry & Material ScienceНеорганические материалы Inorganic Materials

  • ISSN (Print) 0002-337X
  • ISSN (Online) 3034-5588

Синтез и термодинамические свойства германата Ca₃Sc₂Ge₃O₁₂

PII
10.31857/S0002337X24020012-1
DOI
10.31857/S0002337X24020012
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 60 / Issue number 2
Pages
141-146
Abstract
Неорганические материалы, Синтез и термодинамические свойства германата Ca₃Sc₂Ge₃O₁₂
Keywords
Date of publication
14.09.2025
Year of publication
2025
Number of purchasers
0
Views
3

References

  1. 1. Piccinellia F., Lausib A., Bettinellia M. Structural Investigation of the New Ca₃LN₂Ge₂O₁₂ (Ln = Pr, Nd, Sm, Gd and Dy) Compounds and Luminescence Spectroscopy of Ca₃Sc₂Ge₃O₁₂ Doped with the Eu⁺³ Ion // J. Solid State Chem. 2013. V. 205. P. 190-196. https://doi.org/10.1016/j.jssc.2013.07.021
  2. 2. Lee J., Ohba N., Asahi R. Design Rules for High Oxygen-Ion Conductivity in Garnet-Type Oxides // Chem. Mater. 2020. V. 32. P. 1358–1370. https://doi.org/10.1021/acs.chemmater.9b02044
  3. 3. He Y., Wei X., Wu Y., Chen X., Yang J., Zhou H. Effects of Packing Fraction, Lattice Vibration, and Bond Valence on the Microwave Dielectric Properties of low-εᵣ Garnet-Type Ca₃Sc₂Ge₃O₁₂ Ceramics // J. Solid State Chem. 2023. V. 322. P. 123980(1-8). https://doi.org/10.1016/j.jssc. 2023.123980
  4. 4. Tang Y., Zhang Z., Li J., Xu M., Zhai Y., Duan L., Su C., Liu L., Sun Y., Fang L. A3Y2Ge3O12 (A = Ca, Mg): Two Novel Microwave Dielectric Ceramics with Contrasting τf and Q // J. Eur. Ceram. Soc. 2020. V. 4. P. 1–20. https://doi.org/10.1016/j.jeurceramsoc.2020.04.052
  5. 5. Baklanova Y.V., Enyashin A.N., Maksimova L.G., Tyutyunik A.P., Chufarov A.Yu., Gorbatov E.V., Baklanova I.V., Zubkov V.G. Sensitized IR Luminescence in Ca₃Y₂Ge₃O₁₂: Nd³⁺, Ho³⁺ under 808 nm Laser Excitation // Ceram. Int. 2018. V. 44. P. 6959–6967. https://doi.org/10.1016/j.ceramint.2018.01.128
  6. 6. Cui J., Zheng Y., Wang Zh., Cao L., Wang Z., Li P. Improving the Luminescence Thermal Stability of Ca₃Y₂Ge₃O₁₂: Cr³⁺ Based on Cation Substitution and its Application in NIR LEDs // Mater. Adv. 2022. V. 3. P. 2772-2778. https://doi.org/10.1039/02MA00009A
  7. 7. 7. Ji Ch., Huang Zh., Tian X., Tian X., Zhang L., He H., Wen J., Peng Y. Sm³⁺/Pr³⁺ Biactivated Ca₃Y₂Ge₃O₁₂: 0.04 Sm³⁺: Pr³⁺ Red Phosphor with High Thermal Stability for Low Correlated Temperature WLED // J. Lumin. 2021. V. 232. P. 117775(1-8). https://doi.org/10.1016/ j.jlumin.2020.11775
  8. 8. Rammohan A.A. Review on Effect of Thermal Factors on Performance of High Power Light Emitting Diode (HPLED) // J. Eng. Sci. Technol. Rev. 2016. V. 9. P. 165-179. https://doi.org/10.25103/jestr.094.24
  9. 9. Müller-Buschbaum H., Schnering H.G. Über Oxoscandate. I. Zur Kenntnis des Ca₂GeO₄ // Z. Anorg. Allg. Chem. 1965. B. 336. № 5. S. 295–305. https://doi.org/10.1002/zaac. 19653360510
  10. 10. Klimm D., Philippen J., Markurt T., Kwasniewski A. Ce⁴⁺: CaSc₄O₄ Crystal Fibers for Green Light Emission: Growth Issues and Characterization // Mater. Res. Soc. Symp. Proc. 2014. V. 11. P. 21(1–5). https://doi.org/10.1557/opl.2014.365
  11. 11. Chen X., Wang F., Zhi W., Liu W., Wang X., Tian Y., Xu B., Yang B. Phase Equilibria of the CaO-SiO₂-Sc₂O₃ Ternary System // J. Phase Equilib. Diffus. 2023. V. 44. P. 102-114. https://doi.org/10.1007/s11669-022-01022-y
  12. 12. Диаграммы состояния систем тугоплавких оксидов. Справочник. Вып. 5. Ч. 1 / Под ред. Галахова Ф.Я. Л.: Наука, 1985. 284 с.
  13. 13. Fiquet G., Gillet P., Richet P. Anharmonicity and High-Temperature Heat Capacity of Crystals: the Examples of Ca₂GeO₄, Mg₂GeO₄ and CaMgGeO₄ Olivines // Phys. Chem. Mater. 1992. V. 18. P. 469–479. https://doi.org/10.1007/BF00200970
  14. 14. Shushunov A.N., Gorshkov O.N., Smirnova N.N., Somov N.V., Chirshkov Yu.I., Bykov A.B. Thermophysical Properties of Ca₂GeO₄ over the Temperature Range between (6 and 350 K) // J. Chem. Thermodyn. 2014. V. 78. P. 58–68. https://doi.org/10.1016/j.jct.2014.06.019
  15. 15. Koseva I., Nikolov V., Petrova N., Tzvetkov P., Marychev M. Thermal Behavior of Germinates with Olivine Structure // Thermochim. Acta. 2016. V. 646. P. 1–7. https://doi.org/10.1016/j.tca.2016.11.004
  16. 16. Li W., Chen D., Shen G. Encapsulating Ca₂Ge₇O₁₆ Nanowires within Grapheme Sheets as Anode Materials for Lithium-ion Batteries // J. Mater. Chem. A. 2015. V. 3. P. 20673-20690. https://doi.org/10.1039/cSta04175a
  17. 17. Торопов Н.А., Бондарь И.А., Лазарев А.Н., Смолин Ю.И. Силикаты редкоземельных элементов и их аналоги. Л.: Наука, 1971. 230 с.
  18. 18. Li H., Ma S., Yu Z., Zhu H., Li N. In Situ High-Pressure X-ray Diffraction of the Two Polymorphs of Sc₂Ge₂O₇ // AIP Adv. 2020. V. 10. P. 095209(1-7). https://doi.org/10.1063/5.0021334
  19. 19. Денисова Л.Т., Иртюго Л.А., Каргин Ю.Ф., Белецкий В.В., Денисов В.М. Высокотемпературная теплоемкость Tb₂SN₂O₇ // Неорган. материалы. 2017. Т. 53. № 1. С. 71-73. https://doi.org/10.7868/S0002337X17010043
  20. 20. Mill B.V., Belokoneva E.I., Simonov M.A., Belov N.V. Refined Crystal Structures of the Scandium Garnets Ca₃Sc₂Si₃O₁₂, Ca₃Sc₂Ge₃O₁₂ and Cd₃Sc₂Ge₃O₁₂ // J. Struct. Chem. 1977. V. 18. P. 321-323. https://doi.org/10.1007/BF00753987
  21. 21. Maier C.G., Kelley K.K. An Equation for the Representation of High Temperature Heat Content Data // J. Am. Chem. Soc. 1932. V. 54. № 8. P. 3243-3246. https://doi.org/10.1021/ja01347a029
  22. 22. Leitner J., Chuchvalec P., Sedmidubský D., Strejc A., Abrman P. Estimation of Heat Capacities of Solid Mixed Oxides // Thermochim. Acta. 2003. V. 395. P. 27–46. https://doi.org/10.1016/S0040-6031 (02)00176-6
  23. 23. Leitner J., Voňka P., Sedmidubský D., Svoboda P. Application of Neumann-Kopp Rule for the Estimation of Heat Capacity of Mixed Oxides // Thermochim. Acta. 2010. V. 497. P. 7-13. https://doi.org/10.1016/j.tca.2009.08.002
  24. 24. Кубашевский О., Олкокк С.Б. Металлургическая термохимия. М.: Металлургия, 1982. 392 с.
  25. 25. Третьяков Ю.Д. Твердофазные реакции. М.: Химия, 1978. 360 с.
  26. 26. Zhang Y., Jung I.-H. Critical Evaluation of Thermodynamic Properties of Rare Earth Sesquioxides (RE = La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Sc and Y) // CALPHAD: Comput. Coupling Phase Diagrams Thermochem. 2017. V. 58. P. 169–203. https://doi.org/10.1016/j.calphad.2017.07.001
  27. 27. Осина Е.А. Термодинамические функции молекул оксидов германия в газовой фазе: GeO₂(г), Ge₂O₂ (г) и Ge₂O₃(г) // Теплофизика высоких температур. 2017. Т. 55. № 2. С. 223-227. https://doi.org/10.7868/S0040364417020120
  28. 28. Кумок В.Н. Проблема согласования методов оценки термодинамических характеристик // Прямые и обратные задачи химической термодинамики. Новосибирск: Наука, 1987. С. 108–123.
  29. 29. Mostafa A.T.M.G., Eakman J.M., Montoya M.M., Yarbro S.L. Prediction of Heat Capacities of Solid Inorganic Salts from Group Contribution // Ind. Eng. Chem. Res. 1996. V. 35. № 1. P. 343-348. https://doi.org/10.1021/ie9501485
  30. 30. Leitner J., Sedmidubský D., Chuchvalec P. Prediction of Heat Capacities of Solid Binary Oxides from Group Contribution Method // Ceramics-Silikáty. 2002. V. 46(1). P. 29–32.
  31. 31. Mostafa A.T.M.G., Eakman J.M., Yarbro S.L. Prediction of Standard Heats and Gibbs Free Energies of Formation of Solid Inorganic Salts from Group Contributions // Ind. Eng. Chem. Res. 1995. V. 34. P. 4577–4582. https://doi.org/10.1021/IE00039A053
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library