RAS Chemistry & Material ScienceНеорганические материалы Inorganic Materials

  • ISSN (Print) 0002-337X
  • ISSN (Online) 3034-5588

Оптимизация перехода тетрагональной модификации твердого электролита LLZ в кубическую с использованием механоактивации

PII
10.31857/S0002337X24010137-1
DOI
10.31857/S0002337X24010137
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 60 / Issue number 1
Pages
111-119
Abstract
Неорганические материалы, Оптимизация перехода тетрагональной модификации твердого электролита LLZ в кубическую с использованием механоактивации
Keywords
Date of publication
14.09.2025
Year of publication
2025
Number of purchasers
0
Views
3

References

  1. 1. Ярославцев А.Б. Основные направления разработки и исследования твердых электролитов // Успехи химии. 2016. Т. 85. № 11. С. 125–127. V. 85. № 11. P. 1255–1276. https://doi.org/10.1070/rcr4634
  2. 2. Abouali S., Yim C.-H., Merati A., Abu-Lebdeh Y., Thangadurai V. Garnet-Based Solid-State Li Batteries: From Materials Design to Battery Architecture // ACS Energy Lett. 2021. V. 6. P. 1920–1941. https://doi.org/10.1021/acsenergylett.1c00401
  3. 3. Wang C., Fu K., Kammampata S.P., McOwen D.W., Samson A.J., Zhang L., Hitz G.T., Nolan A.M., Wachsman E.D., Mo Y., Thangadurai V., Hu L. Garnet-Type Solid-State Electrolytes: Materials, Interfaces, and Batteries // Chem. Rev. 2020. V. 120. № 10. P. 4257–4300. https://doi.org/10.1021/acs.chemrev.9b00427
  4. 4. Ильина Е.А., Лялин Е.Д., Антонов Б.Д., Панкратов А.А. Твердые электролиты на основе Li7La3Zr2O12, содопированные ионами Ta5+ и Al3+ для литиевых источников тока // Журн. прикл. химии. 2022. Т. 95. Вып. 5. С. 627–635.
  5. 5. Murugan R., Thangadurai V., Weppner W. Fast Lithium Ion Conduction in Garnet-Type Li7La3Zr2O12 // Angew. Chem. Int. Ed. 2007. V. 46. P. 7778–7781. https://doi.org/10.1002/anie.200701144
  6. 6. Li Y., Han J.-T., Wang C.-A., Vogel S.C., Xie H., Xu M., Goodenough J.B. Ionic Distribution and Conductivity in Lithium Garnet Li7La3Zr2O12 // J. Power Sources. 2012. V. 209. P. 278–281.
  7. 7. Аввакумов Е.Г. Механические методы активации химических процессов. Новосибирск: Наука, 1986. 305 с.
  8. 8. Kosova N.V., Kulova T.L., Nikolskaya N.F., Podgornova O.A., Rychagov A.Yu., Sosenkin V.E., Volfkovich Yu.M. Effect of Porous Structure of LiCoPO4 on Its Performance in Hybrid Supercapacitor // J. Solid State Electrochem. 2019. V. 23. P. 1981–1990. https://doi.org/10.1007/s10008-019-04278-6
  9. 9. Kosova N.V., Devyatkina E.T., Stepanov A.P., Buzlukov A.L. Lithium Conductivity and Lithium Diffusion in NASICON-type Li1+xTi2–xAlx (PO4)3 (x = 0; 0.3) Prepared by Mechanical Activation // Ionics. 2008. V. 14. P. 303–311 https://doi.org/10.1007/s11581-007-0197-5
  10. 10. Düvel A., Kuhn A., Robben L., Wilkening M., Heitjans P. Mechanosynthesis of Solid Electrolytes: Preparation, Characterization, and Li Ion Transport Properties of Garnet-Type Al-Doped Li7La3Zr2O12 Crystallizing with Cubic Symmetry // J. Phys. Chem. C. 2012. V. 116. P. 15192–15202. https://doi.org/10.1021/jp301193r
  11. 11. Lee J.-M., Kim T., Baek S.-W., Aihara Y., Park Y., Kim Y.-I., Doo S.-G. High Lithium Ion Conductivity of Li7La3Zr2O12 Synthesized by Solid State Reaction // Solid State Ionics. 2014. V. 258. P. 13–17.
  12. 12. Pan X.X., Wang J.X., Chang X.H., Li Y.D., Guan W.B. A Novel Solid-Liquid Route for Synthesizing Cubic Garnet Al-Substituted Li7La3Zr2O12 // Solid State Ionics. 2018. V. 317. P. 1–6. https://doi.org/10.1016/j.ssi.2017.12.034
  13. 13. Oleszak D., Pawlyta M., Pikula T. Influence of Powder Milling and Annealing Parameters on the Formation of Cubic Li7La3Zr2O12 Compound // Materials. 2021. V. 14. № 24. P. 7633. https://doi.org/10.3390/ma14247633
  14. 14. Куншина Г.Б., Бочарова И.В., Щербина О.Б. Проводимость и механические свойства литийпроводящего твердого электролита Li7-3хAlхLa3Zr2O12 // Неорган. материалы. 2022. Т. 58. № 2. С. 155–161. https://doi.org/10.31857/S0002337X22020099
  15. 15. Куншина Г.Б., Иваненко В.И., Бочарова И.В. Синтез и изучение проводимости Al-замещенного Li7La3Zr2O12 // Электрохимия. 2019. Т. 55. № 6. С. 734–740. https://doi.org/10.1134/S0424857019060136
  16. 16. Xu B., Duan H., Xia W., Guo Y., Kang H., Li H., Liu H. Multistep Sintering to Synthesize Fast Lithium Garnets // J. Power Sources. 2016. V. 302. P. 291–297.
  17. 17. Geiger C.A., Alekseev E., Lazic B., Fisch M., Armbruster T., Langner R., Fechtelkord M., Kim N., Pettke T., Weppner W. Crystal Chemistry and Stability of “Li7La3Zr2O12” Garnet: A Fast Lithium-Ion Conductor // Inorg. Chem. 2011. V. 50. P. 1089–1097. https://doi.org/10.1021/ic101914e
  18. 18. Wu J.-F., Chen E.-Y., Yu Y., Liu, L., Wu Y., Pang W.-K., Peterson V.K., Guo X. Gallium-Doped Li7La3Zr2O12 Garnet-Type Electrolytes with High Lithium-Ion Conductivity // ACS Appl. Mater. Interfaces. 2017. V. 9. P. 1542–1552. https://doi.org/10.1021/acsami.6b13902
  19. 19. Deivanayagam R., Shahbazian-Yassar R. Electrochemical Methods and Protocols for Characterization of Ceramic and Polymer Electrolytes for Rechargeable Batteries // Batteries Supercaps. 2021. V. 4. № 4. P. 596–606. https://doi.org/10.1002/batt.202000221
  20. 20. Awaka J., Kijima N., Hayakawa H., Akimoto J. Synthesis and Structure Analysis of Tetragonal Li7La3Zr2O12 with the Garnet-Related Type Structure // J. Solid State Chem. 2009. V. 182. P. 2046–2052. https://doi.org/10.1016/j.jssc.2009.05.020
  21. 21. Shao C., Liu H., Yu Z., Zheng Z., Sun N., Diao C. Structure and Ionic Conductivity of Cubic Li7La3Zr2O12 Solid Electrolyte Prepared by Chemical Co-precipitation Method // Solid State Ionics. 2016. V. 287. P. 13–16. http://dx.doi.org/10.1016/j.ssi.2016.01.042
  22. 22. Chen F., Yang D., Zha W., Zhu, B., Zhang Y., Li J., Gu Y., Shen Q., Zhang L., Sadoway D.R. Solid Polymer Electrolytes Incorporating Cubic Li7La3Zr2O12 for All Solid-State Lithium Rechargeable Batteries // Electrochim. Acta. 2017. V. 258. P. 1106–1114. https://doi.org/10.1016/j.electacta.2017.11.164
  23. 23. Lu W., Xue M., Zhang C. Modified Li7La3Zr2O12 (LLZ) and LLZ-Polymer Composites for Solid-State Lithium Batteries // Energy Stor. Mater. 2021. V. 39. P. 108–129.
  24. 24. Roitzheim C., Sohn Y.J., Kuo L.-Y., Häuschen G., Mann M., Sebold D., Finsterbusch M., Kaghazchi P., Guillon O., and Fattakhova-Rohlfing D. All-Solid-State Li Batteries with NCM–Garnet-Based Composite Cathodes: The Impact of NCM Composition on Material Compatibility // ACS Appl. Energy Mater. 2022. V. 5. № 6. P. 6913–6926.
  25. 25. van den Broek J., Rupp J.L.M., Afyon S. Boosting the Electrochemical Performance of Li-Garnet Based All-solid-state Batteries with Li4Ti5O12 Electrode: Routes to Cheap and Large Scale Ceramic Processing // J. Electroceram. 2017. V. 38. P. 182–188. https://doi.org/10.1007/s10832-017-0079-9
  26. 26. Hongxia G., Kai C., Di Y., Ao M., Mian H., Yuanhua L., Cewen N. Formation Mechanism of Garnet-Like Li7La3Zr2O12 Powder Prepared by Solid State Reaction // Rare Met. Mater. Eng. 2016. V. 45. № 3. P. 612–616.
  27. 27. Gajraj V., Kumar A., Indris S., Ehrenberg H., Kumar N., Mariappan C.R. Influence of Al on the Structure and Ion Transport in Garnet-Type Li7La3-xAlxZr2O12 Solid Electrolytes for Li-Ion Batteries // Ceram. Int. 2022. V. 48. P. 29238–29246. https://doi.org/10.1016/j.ceramint.2022.05.199
  28. 28. Narayanan S., Hitz G.T., Wachsman E.D., Thangadurai V. Effect of Excess Li on the Structural and Electrical Properties of Garnet-Type Li6La3Ta1.5Y0.5O12 // J. Electrochem. Soc. 2015. V. 162. № 9. P. A1772–A1777. https://doi.org/10.1149/2.0321509jes
  29. 29. Дружинин К.В., Шевелин П.Ю., Ильина Е.А. Проблема циклируемости на границе Li7La3Zr2O12 |Li // Журн. прикл. химии. 2018. Т. 91. № 1. С. 70–76.
  30. 30. Lu W., Xue M., Zhang C. Phase Evolution, Structure and Electrochemical Performance of Al-, Ga- and Ta- Substituted Li7La3Zr2O12 Ceramic Electrolytes by a Modified Wet Chemical Route // Ceram. Int. 2022. V. 48. P. 31315-31325. https://doi.org/10.1016/j.ceramint.2022.06.232
  31. 31. Matsuda Y., Sakamoto K., Matsui M., Yamamoto O., Takeda Y., Imanishi N. Phase Formation of a Garnet-Type Lithium-Ion Conductor Li7−3xAlxLa3Zr2O12 // Solid State Ionics. 2015. V. 277. P. 23–29. https://doi.org/10.1016/j.ssi.2015.04.011
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library