RAS Chemistry & Material ScienceНеорганические материалы Inorganic Materials

  • ISSN (Print) 0002-337X
  • ISSN (Online) 3034-5588

Баротермические анализ и обработка, пластическое деформирование, микроструктура и свойства двойных сплавов Al–Zn

PII
10.31857/S0002337X24010049-1
DOI
10.31857/S0002337X24010049
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 60 / Issue number 1
Pages
25-35
Abstract
Неорганические материалы, Баротермические анализ и обработка, пластическое деформирование, микроструктура и свойства двойных сплавов Al–Zn
Keywords
Date of publication
14.09.2025
Year of publication
2025
Number of purchasers
0
Views
3

References

  1. 1. Диаграммы состояния двойных металлических систем. Справочник /Под ред. Лякишева Н.П. Т. 1–4. М.: Машиностроение, 1996.
  2. 2. Tao K., Xu J., Zhang D., Zhang A., Su G., Zhang J. Effect of Final Thermomechanical Treatment on the Mechanical Properties and Microstructure of T Phase Hardened Al-5.8Mg-4.5Zn-0.5Cu Alloy // Materials. 2023. V. 16. P. 3062. https://doi.org/10.3390/ma16083062
  3. 3. Cui J., Tang Z., Yu M., Hu J., Chen X., Xu Z., Zeng J. Effect of Heat Treatment on Microstructural Evolution and Microhardness Change of Al-5Zn-0.03In-1Er Alloy // Metals. 2022. V. 12. P. 370. https://doi.org/10.3390/met12030370
  4. 4. Yang S.L., Xu C., Lin Q.L., Ding B. Investigation on Microstructure and Fatigue Behavior of Al-5Zn-2Mg High Strength Aluminum Alloy with T5 Heat Treatment // Phys. Procedia. 2013. V. 50. P. 19–24.
  5. 5. Tao J. Q., Zhao G. Z., Huang Z. W., Li M., Xing Z. H. Investigation on the Microstructural Evolution and Mechanical Properties of Semi-solid Al-5Zn-3Mg-2Cu Аlloy Based on Recrystallization and Partial Remelting // IOP Conf. Ser.: Mater. Sci. Eng. 2020. V. 770 P. 012011. https://doi.org/10.1088/1757-899X/770/1/012011
  6. 6. Tian A., Sun L., Deng Y., Yuan M. Study of the Precipitation Kinetics, Microstructures, and Mechanical Properties of Al-Zn-Mg-xCu Alloys // Metals. 2022. V. 12. P. 1610. https://doi.org/10.3390/met12101610
  7. 7. Sadawy M., Metwally H., Abd El-Aziz H., Adbelkarim A., Mohrez W., Mashaal H., Kandil A. The Role of Sn on Microstructure, Wear and Corrosion Properties of Al-5Zn-2.5Mg-1.6Cu-xSn Alloy // Mater. Res. Express. 2022. V. 9. P. 096507. https://doi.org/10.1088/2053-1591/ac8cd2
  8. 8. Shah S., Thronsen E., Hatzoglou C., Wenner S., Marioara C., Holmestad R., Holmedal B. Effect of Cyclic Ageing on the Early-Stage Clustering in Al–Zn–Mg(-Cu) Alloys // Mater. Sci. Eng., A. 2022. V. 846. P. 143280. https://doi.org/10.1016/j.msea.2022.143280
  9. 9. Kumar V.A., Bhat R.R., Sharma R.C. Age Hardening Behavior in Al-8Zn-2Mg-2Cu Wrought Aluminum Alloy // Mater. Sci. Forum. 2012. V. 710. P. 527–532. https://doi.org/10.4028/www.scientific.net/MSF.710.527
  10. 10. Wu C., Feng D., Ren J., Zang Q., Li J., Liu S., Zhang X. Effect of Non-Isothermal Retrogression and Re-Ageing on Through-Thickness Homogeneity of Microstructure and Properties of Al-8Zn-2Mg-2Cu Alloy Thick Plate // J. Cent. South Univ. 2022. V. 29 P. 960–972. https://doi.org/10.1007/s11771-022-4960-6
  11. 11. Zhang Q., Wu Y., Li T., Qiu C., Wang S., Fan F., Teng H., Liu C.. Liu H., Ma A., Jiang J. Significant Enhancement in Tensile Strength of Room-Temperature Rolled Al–8Zn–1Mg Alloy Induced by Profuse Microbands // Mater. Sci. Eng., A. 2022. V. 861(8). P. 144359. https://doi.org/10.1016/j.msea.2022.144359
  12. 12. Bobruk E.V., Sauvage X., Enikeev N.A., Straumal B.B., Valiev R.Z. Mechanical Behavior of Ultrafine-Grained Al-5Zn, Al-10Zn, Al-30Zn Alloys // Rev. Adv. Mater. Sci. 2015. V. 43. P. 45–51.
  13. 13. Jia H., Piao Y., Zhu K., Yin C., Zhou W., Li F., Zha M. Thermal Stability and Mechanical Properties of Al-Zn and Al-Bi-Zn Alloys Deformed by ECAP // Metals. 2021. V. 11. P. 2043. https://doi.org/10.3390/met11122043
  14. 14. Song Z., Niu R., Cui X., Bobruk E. V., Murashkin Yu. M., Enikeev N. A. Gu J., Song M., Bhatia V., Ringer S.P., Valiev R.Z., Liao X. Mechanism of Room-Temperature Superplasticity in Ultrafine-Grained Al–Zn Alloys // Acta Mater. 2023. V. 246. P. 118671. https://doi.org/10.1016/j.actamat.2023.118671
  15. 15. Xiao J.J., Liu C.Y., Cao K. Effects of Cold Rolling on the Microstructure and Mechanical Properties of High-Zn-Content Al-Zn-Mg-Sc Alloys // J. Mater. Eng. Perform. 2023. March. https://doi.org/10.1007/s11665-023-08046-6
  16. 16. Ahmed A.Q., Ugi D., Lendvai J., Murashkin M.Yu., Bobruk E.V., Valiev R.Z., Chinh N.Q. Effect of Zn Content on Microstructure Evolution in Al–Zn Alloys Processed by HighPressure Torsion // J. Mater. Res. 2023. V. 38. P. 3602–3612. https://doi.org/10.1557/s43578-023-01088-5
  17. 17. Remsak K., Boczkal S., Limanówka K., Płonka B., ˙ Zyłka K., Wegrzyn M., Lesniak D. Effects of Zn, Mg, and Cu Content on the Properties and Microstructure of Extrusion-Welded Al–Zn–Mg–Cu Alloys // Materials. 2023. V. 16. № 19. P. 6429. https://doi.org/10.3390/ma16196429
  18. 18. Alhamidi A.A., Edalati K., Horita Z., Hirosawa S., Matsuda K., Terada D. Softening by Severe Plastic Deformation and Hardening by Annealing of Aluminum–Zinc Alloy: Significance of Elemental and Spinodal Decompositions // Mater. Sci. Eng., A. 2014. V. 610. P. 17–27. https://doi.org/10.1016/j.msea.2014.05.026
  19. 19. Mazilkin A.A., Straumal B.B., Rabkin E., Baretzky B., Enders S., Protasova S.G., Kogtenkova O.A., Valiev R. Z. Softening of Nanostructured Al–Zn and Al–Mg Alloys after Severe Plastic Deformation // Acta Mater. 2006. V. 54. № 15. P. 3933–3939. https://doi.org/10.1016/j.actamat.2006.04.025
  20. 20. Borodachenkova M., Barlat F., Wen W., Bastos A., Grácio J.J. A Microstructure-Based Model for Describing the Material Properties of Al–Zn Alloys during High Pressure Torsion // Int. J. Plast. 2015. V. 68. P. 150–163. https://doi.org/10.1016/j.ijplas.2014.01.009
  21. 21. Mazilkin A.A., Straumal B.B., Borodachenkova M.V., Valiev R.Z, Kogtenkova O.A. Gradual Softening of Al–Zn Alloys during High-Pressure Torsion // Mater. Lett. 2012. V. 84. P. 63–65. https://doi.org/10.1016/j.matlet.2012.06.026
  22. 22. Song Z., Niu R., Cui X., Bobruk E. V., Murashkin M. Yu., Enikeev N., Gu J., Song M., Bhatia V., Ringer S. P., Valiev R.Z., Liao X. Mechanism of Room-Temperature Superplasticity in Ultrafine-Grained Al–Zn Alloys // Acta Mater. 2023. V. 246. P. 118671. https://doi.org/10.1016/j.actamat.2023.118671
  23. 23. Valiev R. Z., Murashkin M. Yu., Kilmametov A. R., Straumal B., Chinh N. Q., Langdon T. G. Unusual Super-Ductility at Room Temperature in an Ultrafine-Grained Aluminum Alloy // J. Mater. Sci. 2010. V. 45. P. 4718–4724. https://doi.org/10.1007/s10853-010-4588-z
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library