RAS Chemistry & Material ScienceНеорганические материалы Inorganic Materials

  • ISSN (Print) 0002-337X
  • ISSN (Online) 3034-5588

Polymorphism of High-Temperature Aluminothermic Synthesis Products in the Ni–Al–Co System

PII
10.31857/S0002337X23100020-1
DOI
10.31857/S0002337X23100020
Publication type
Status
Published
Authors
Volume/ Edition
Volume 59 / Issue number 10
Pages
1105-1110
Abstract
Ni–Al–Co alloy with the composition 45 wt % Ni + 41 wt % Co + 14 wt % Al has been prepared for the first time by aluminothermic reaction. The phase composition of the synthesized alloy comprises a cubic (Ni,Co)3Al solid solution of cobalt in nickel aluminide (γ'-phase) and a tetragonal (Ni,Co)3Al phase. The formation of the tetragonal structure of (Ni,Co)3Al is due to a martensitic transformation of a supersaturated initial structure in grains of the cubic (Ni,Co)3Al phase. The intragranular microhardness of the synthesized alloy is 6500 MPa. The alloy has soft magnetic properties, with the highest magnetization of 27 emu/g in a magnetic field of 10 kOe.
Keywords
СВС алюмотермический синтез интерметаллид сплав Ni–Al–Co
Date of publication
01.10.2023
Year of publication
2023
Number of purchasers
0
Views
36

References

  1. 1. Jozwik P., Polkowski W., Bojar Z. Applications of Ni3Al Based Intermetallic Alloys–Current Stage and Potential Perceptivities // Materials. 2015. V. 8. № 5. P. 2537–2568.https://doi.org/10.3390/ma8052537
  2. 2. Amrit R.P., Manidipto M., Dilpreet S. A Ritical Review on the Properties of Intermetallic Compounds and Their Application in the Modern Manufacturing // Cryst. Res. Technol. 2022. V. 57. № 3. P. 2100159. https://doi.org/10.1002/crat.202100159
  3. 3. Бондаренко Ю.А., Базылева О.А., Раевских А.И., Нарский А.Р. Исследования по созданию новой высокотемпературной жаростойкой матрицы на основе интерметаллидов NiAl–Ni3Al // Тр. ВИАМ. 2018. Т. 11. С. 3–11.https://doi.org/10.18577/2307-6046-2018-0-11-3-11
  4. 4. Kainuma R., Ise M., Jia C.-C., Ohtani H., Ishida K. Phase Equilibria and Microstructural Control in the Ni−Co−Al System // Intermetallics. 1996. V. 4 (Suppl. 1). P. 151–158.
  5. 5. Zhou Y., Nash P., Bessa S.M. et al. Phase Equilibria in the Al-Co-Ni Alloy System // J. Phase Equilib. Diffus. 2017. V. 38. P. 630–645. https://doi.org/10.1007/s11669-017-0586-z
  6. 6. Koneva N.A., Potekaev A.I., Nikonenko E.L., Popova N.A., Klopotov A.A., Klopotov V.D. Structure and Phase Composition of Heat-Resistant Ni–Al–Co Alloy after Annealing and Creep // Russ. Phys. J. 2019. V. 61. № 12. P. 2218–2224. https://doi.org/10.1007/s11182-019-01658-3
  7. 7. Povarova K., Drozdova A., Bazyleva A., Morozova A., Antonova A., Bondarenko Yu., Bulakhtina M., Ashmarina A., Arginbaeva E., Alad’ev N. Structural Heat-Resistant β-NiAl +
  8. 8. Шредер Е.И., Лукоянов А.В., Махнев А.А., Багласов Е.Д., Cуреш К.Г. Электронная структура и оптические свойства сплава Гейслера Co2NiAl // ФММ. 2019. Т. 120. № 8. С. 793–797. https://doi.org/10.1134/S0015323019080151
  9. 9. Wen Z., Hou H., Tian J.S., Zhao Y., Li H., Ha P.L. First-Principles Investigation of Martensitic Transformation and Magnetic Properties of Ni2XAl (X = Cr, Fe, Co) Heusler Compounds // Intermetallics. 2018. V. 92. P. 15–19. https://doi.org/10.1016/j.intermet.2017.09.007
  10. 10. Oikawa K., Wulff L., Iijima T., Gejima F., Ohmori T., Fujita A., Fukamichi K., Kainuma R., Ishida K. Promising Ferromagnetic Ni–Co–Al Shape Memory Alloy System // Appl. Phys. Lett. 2001. V. 79. P. 3290. https://doi.org/10.1063/1.1418259
  11. 11. Tanaka Y., Ohmori T., Oikawa K., Kainuma R., Ishida K. Ferromagnetic Co-Ni-Al Shape Memory Alloys with β + γ Two-Phase Structure // Mater. Trans. 2004. V. 45. № 2. P. 427–430. https://doi.org/10.2320/matertrans.45.427
  12. 12. Morito H., Fujita A., Fukamichi K., Kainuma R., Ishida K. Magnetocrystalline Anisotropy in Single-Crystal Co–Ni–Al Ferromagnetic Shape-Memory Alloy // Appl. Phys. Lett. 2002. V. 81. № 9. P. 1657–1659. https://doi.org/10.1063/1.1503851
  13. 13. Xu Y., Kameoka S., Kishida K., Demura M., Tsai A., Hirano T. Catalytic Properties of Ni3Al Intermetallics for Methanol Decomposition // Mater. Trans. 2004. V. 45. № 11. P. 3177–3179. https://doi.org/10.2320/matertrans.45.3177
  14. 14. Sanin V.N., Borshch V.N., Andreev D.E., Ikornikov D.M., Yukhvid V.I., Zhuk S.Ya., Sachkova N.V., Lapidus A.L., Eliseev O.L. Co-Based SHS-Catalysts for the Fisher-Tropsch Process // Adv. Mater. Tech. 2016. № 1. P. 36–40. https://doi.org/10.17277/amt.2017.04.pp.036-040
  15. 15. Merzhanov A.G., Borovinskaya I.P. Self-Propagating High-Temperature Synthesis of Fefractory Inorganic Compounds // Dokl. Akad. Nauk SSSR. 1972. V. 204 № 2. P. 366–369.
  16. 16. Busurina M.L., Sytschev A.E., Lazarev P.A., Boyarchenko O.D., Sivakova A.O., Morozov Yu.G. SHS of Al75Co15Ni15 and Al65Cu20Co15 Quasicrystals // Int. J. Self-Propag. High-Temp. Synth. 2023. V. 32. № 3. P. 215–220. https://doi.org/10.3103/S1061386223030056
  17. 17. Alkan M., Sonmez S., Bora Derin B., Yücel O., Andreev D., Sanin V., Yukhvid V. Production of Al-Co-Ni Ternary Alloys by the SHS Method for Use in Nickel Based Superalloys Manufacturing // High Temp. Mater. Proc. 2015. V. 34. № 3. P. 275–283. https://doi.org/10.1515/htmp-2014-0052
  18. 18. Горшков В.А., Хоменко Н.Ю., Сачкова Н.В. Диспергирование литых материалов, полученных методом СВС в системе Mn–Cr–Al–C // Неорган. материалы. 2021. Т. 57. № 6. С. 615–620. https://doi.org/10.31857/S0002337X21060026
  19. 19. Сычев А.Е., Бусурина М.Л., Боярченко О.Д., Лазарев П.А., Морозов Ю.Г., Сивакова А.О. Особенности структуро- и фазообразования в системе Ni–Al–Co в процессе СВС // Неорган. материалы. 2023. Т. 59. № 7. С. 733–739. https://doi.org/10.31857/S0002337X23070151
  20. 20. https://www.ism.ac.ru/thermo/
  21. 21. Симонян А.В., Пономарев В.И., Хоменко Н.Ю., Вишнякова Г.А., Горшков В.А., Юхвид В.И. Синтез литых алюминидов никеля СВС-методом // Неорган. материалы. 1998. Т. 34. № 6. С. 684–687.
  22. 22. Симонян А.В. Самораспространяющийся высокотемпературный синтез литых алюминидов металлов триады железа: Дис. … канд. хим. наук. Черноголовка. 2000.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library