RAS Chemistry & Material ScienceНеорганические материалы Inorganic Materials

  • ISSN (Print) 0002-337X
  • ISSN (Online) 3034-5588

Zirconium and Rubidium Solubility in Aluminoborosilicate Glasses for Radioactive Waste Immobilization

PII
10.31857/S0002337X2309004X-1
DOI
10.31857/S0002337X2309004X
Publication type
Status
Published
Authors
Volume/ Edition
Volume 59 / Issue number 9
Pages
1035-1042
Abstract
In search of novel waste form materials for vitrifying high-level radioactive waste with various compositions and improving the way in which they are used, we have prepared and investigated waste form materials in the Na2O–Rb2O–SrO(Ba,Ca)–B2O3–SiO2–Al2O3–ZrO2 system. Using electron microscopy, X-ray diffraction, and infrared spectroscopy characterization of samples prepared by rapid cooling of melts containing 3.6–4.5 mol % rubidium, we have demonstrated the formation of a homogeneous glassy material, determined the solubility limit of zirconium in the glass, and identified uniformly distributed baddeleyite crystals, which indicate that the starting melt contained excess zirconium. In samples containing 6.7–8.5 mol % rubidium, we observed the formation of a less homogeneous material with considerable amounts of crystalline zirconium- and rubidium-containing phases. Analysis of the data obtained has made it possible to optimize the percentages of zirconium and rubidium in the composition of radioactive waste in the case of its immobilization via vitrification with the use of waste form materials of the system studied here.
Keywords
радиоактивные отходы иммобилизация алюмоборосиликатное стекло рубидий цирконий структура
Date of publication
14.09.2025
Year of publication
2025
Number of purchasers
0
Views
3

References

  1. 1. Caurant D., Loiseau P., Majérus O., Aubin-Chevaldonnet V., Bardez I., Quintas A. Glasses, Glass-Ceramics and Ceramics for Immobilization of Highly Radioactive Nuclear Wastes. N. Y.: Nova Science, 2009. 445 p.
  2. 2. Donald I.W. Waste Immobilization in Glass and Ceramic Based Hosts: Radioactive, Toxic and Hazardous Wastes. N. Y.: Wiley, 2010. 507 p. https://doi.org/10.1002/9781444319354
  3. 3. Ojovan M.I., Lee W.E., Kalmykov S.N. An Introduction to Nuclear Waste Immobilisation, 3rd ed. Amsterdam: Elsevier, 2019. P. 1–7. https://doi.org/10.1016/B978-0-08-102702-8.00001-7
  4. 4. Singh B.K., Hafeez M.A., Kim H., Hong S., Kang J., Um W. Inorganic Waste Forms for Efficient Immobilization of Radionuclides // ACS ES&T Eng. 2021. V. 1. № 8. P. 1149–1170. https://doi.org/10.1021/acsestengg.1c00184
  5. 5. Quintas A., Caurant D., Majerus O., Loiseau P., Charpentier T., Dussossoy J.-L. ZrO2 Addition in Soda-Lime Aluminoborosilicate Glasses Containing Rare Earths: Impact on the Network Structure // J. Alloys Compd. 2017. V. 714. P. 47–62. https://doi.org/10.1016/j.jallcom.2017.04.182
  6. 6. Vienna J.D., Collins E.D., Crum J.V., Ebert W.L., Frank S.M., Garn T.G., Gombert D., Jones R., Jubin R.T., Maio V., Marra J.C., Maty J., Nenoff T.M., Riley B.J., Sevigny G.J., Soelberg N., Strachan D., Thallapally P.K., Westsik J.H., Jr. Closed Fuel Cycle Waste Treatment Strategy, FCRD-MRWFD-2015-000674. PNNL-24114. Richland: Pacific Northwest National Laboratory, 2015. https://www.pnnl.gov/main/ publications/external/technical_reports/PNNL-24114.pdf
  7. 7. Lu X. et al. Effect of ZrO2 on the Structure and Properties of Soda-Lime Silicate Glasses from Molecular Dynamics Simulations // J. Non-Cryst. Solids. 2018. V. 491. P. 141–150. https://doi.org/10.1016/j.jnoncrysol.2018.04.013
  8. 8. Chen H., Marcial J., Ahmadzadeh M., Patil D., McCloy J.S. Partitioning of Rare Earths in Multiphase Nuclear Waste Glass-Ceramics // Int. J. Appl. Glass Sci. 2020. V. 11. P. 660–675. https://doi.org/10.1111/ijag.15726
  9. 9. Keshavarzi A., Russel C. The Effect of TiO2 and ZrO2 Addition on the Crystallization of Ce3+ Doped Yttrium Aluminium Garnet from Glasses in the System Y2O3/Al2O3/SiO2/AlF3 // Mater. Chem. Phys. 2012. V. 132. № 2. P. 278–83. https://doi.org/10.1016/j.matchemphys.2011.11.012
  10. 10. Guo Y., Liu C., Wang J., Ruan J., Li X., Han J., Xie J. Effect of ZrO2 Crystallization on Ion Exchange Properties in Aluminosilicate Glass // J. Eur. Ceram. Soc. 2020. V. 40. № 5. P. 2179–2184. https://doi.org/10.1016/j.jeurceramsoc.2020.01.001
  11. 11. Eremyashev V.E., Zherebtsov D.A., Osipova L.M., Danilina E.I. Thermal Study of Melting, Transition and Crystallization of Rubidium and Caesium Borosilicate Glasses // Ceram. Int. 2016. V. 42. P. 18368–18372. https://doi.org/10.1016/j.ceramint.2016.08.169
  12. 12. Еремяшев В.Е., Мазур А.С., Толстой П.М., Осипова Л.М. Исследование особенностей структуры рубидиевых боросиликатных стекол методом ЯМР-спектроскопии // Неорган. материалы. 2019. Т. 55. № 5. С. 538–543. https://doi.org/10.1134/S0020168519050054
  13. 13. Eremyashev V.E., Zherebtsov D.A., Brazhnikov M.P., Zainullina R.T., Danilina E.I. Cerium Influence on the Thermal Properties and Structure of High-Alkaline Borosilicate Glasses // J. Therm. Anal. Calorim. 2020. V. 139. № 2. P. 991–997.
  14. 14. Arima M., Edgar A.D. Stability of Wadeite (Zr2K4Si6O18) under Upper Mantle Conditions: Petrological Implications // Contr. Mineral. Petrol. 1980. V. 72. № 2. P. 191–195. https://doi.org/10.1007/bf00399479
  15. 15. Fewox C.S., Kirumakki S.R., Clearfield A. Structural and Mechanistic Investigation of Rubidium Ion Exchange in Potassium Zirconium Trisilicate // Chem. Mater. 2007. V. 19. № 3. P. 384–392. https://doi.org/10.1021/cm061835x
  16. 16. Lafuente B., Downs R.T., Yang H., Stone N. The Power of Databases: the RRUFF Project // Highlights in Mineralogical Crystallography / Eds. Armbruster T., Danisi R.M. Berlin: Gruyter, 2015. P. 1–30. http://rruff.info
  17. 17. Kyono A., Kimata M. Refinement of the Crystal Structure of a Synthetic Non-Stoichiometric Rb-Feldspar // Miner. Mag. 2001. V. 65. № 4. P. 523–531. https://doi.org/10.1180/002646101750377542
  18. 18. Nakamoto K. Infrared and Raman Spectra of Inorganic and Coordination Compounds // Handbook of Vibrational Spectroscopy. N. Y.: Wiley, 1986. 484 p. https://doi.org/10.1002/0470027320.s4104
  19. 19. Еремяшев В.Е., Осипов А.А., Осипова Л.М. Изучение влияния замещения катиона натрия катионами щелочноземельных металлов на структуру боросиликатных стекол // Стекло и керамика. 2011. № 7. С. 3–7. https://doi.org/10.1007/s10717-011-9353-5
  20. 20. Wan J., Cheng J., Lu P. The Coordination State of B and Al of Borosilicate Glass by IR Spectra // J. Wuhan Univ. Technol. Mater. 2008. V. 23. P. 419–421. https://doi.org/10.1007/s11595-007-3419-9
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library