ОХНМНеорганические материалы Inorganic Materials

  • ISSN (Print) 0002-337X
  • ISSN (Online) 3034-5588

О зависимости эффективного коэффициента разделения от температуры испарения и степени дистилляции

Код статьи
10.31857/S0002337X23080080-1
DOI
10.31857/S0002337X23080080
Тип публикации
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 59 / Номер выпуска 8
Страницы
921-926
Аннотация
Установлена принципиальная возможность пошагового вычисления зависимостей эффективного коэффициента разделения β при дистилляции и сублимации от температуры испарения T и степени дистилляции g. Существование зависимостей β(T) и β(g) рассматривается как следствие изменения распределения примеси в испаряющемся материале при изменении T и g. Расчеты зависимостей β(T) и β(g) основаны на использовании уравнения Бартона–Прима–Слихтера и на расчетах распределения примеси в испаряющемся материале при заданных параметрах вещества и материала. Приведены результаты расчетов названных зависимостей на примере модельного материала на основе бериллия.
Ключевые слова
дистилляция сублимация рафинирование коэффициент разделения диффузионный слой уравнение Бартона–Прима–Слихтера число Пекле
Дата публикации
14.09.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
1

Библиография

  1. 1. King C.J. Separation processes. Second edition. N.Y.: Dover Publication, 2013.
  2. 2. Девятых Г.Г., Еллиев Ю.Е. Глубокая очистки веществ. М.: Высшая школа, 1990. 192 с.
  3. 3. Дытнерский Ю.И. Процессы и аппараты химической технологии. Изд. 2. В 2-х кн. Часть 2. Массообменные процессы и аппараты. М.: Химия, 1995. 368 с.
  4. 4. Нисельсон Л.А., Ярошевский А.Г. Межфазовые коэффициенты распределения. Равновесия кристалл – жидкость и жидкость – пар. М.: Наука, 1992. 399 с.
  5. 5. Кириллов Ю.П., Кузнецов Л.А., Шапошников В.А., Чурбанов М.Ф. Влияние диффузии на глубину очистки веществ дистилляцией // Неорган. материалы. 2015. Т. 51. № 11. С. 1177–1182. https://doi.org/10.7868/S002337X15100085
  6. 6. Жуков А.И., Кравченко А.И. Расчет сублимации с учетом диффузии примеси // Неорган. материалы. 2017. Т. 53. № 6. С. 662–668. https://doi.org/10.1134/S0020168517060161
  7. 7. Кравченко А.И., Жуков А.И. Температурная зависимость диффузионного числа Пекле в процессах сублимации некоторых простых веществ // Неорган. материалы. 2021. Т. 57. № 7. С. 789–795. https://doi.org/10.1134/S0020168521070101
  8. 8. Kravchenko A.I., Zhukov A.I., Datsenko O.A. Temperature Dependences of the Peclet Number in Sublimation Processes of Simple Substances // Probl. At. Sci. Technol. 2022. № 1. P. 13–16. https://vant.kipt.kharkov.ua/
  9. 9. Кравченко А.И., Жуков А.И. Коэффициенты разделения и числа Пекле в испарительных процессах рафинирования веществ с простой основой при температурах вблизи от температур плавления // Неорган. материалы. 2022. Т. 58. № 8. С. 891–897. https://doi.org/10.31857/S0002337X22080073
  10. 10. Пазухин В.А., Фишер А.Я. Разделение и рафинирование металлов в вакууме. М.: Металлургия, 1969. 204 с.
  11. 11. Несмеянов А.Н. Давление пара химических элементов. М.: Из-во АН СССР, 1961. 396 с.
  12. 12. Кристаллизация из расплавов: Справочное изд. Пер. с нем. / Под ред. Бартел И., Буриг Э., Хайн К., Кухарж Л. М.: Металлургия, 1987. 320 с.
  13. 13. Burton J.A., Prim R.C., Slichter W.P. The Distribution of Solute in Crystals Growth from the Melt. 1. Theoretical // J. Chem. Phys. 1953. V. 21. № 11. P. 1987–1991.
  14. 14. Бартон Дж.А., Прим Р.К., Слихтер В.Р. Распределение примесей в кристаллах, выращенных из расплава. Ч. 1. Теория // Германий / Под ред. Петрова Д.А. М.: Иностранная лит., 1955. С. 74–81.
  15. 15. Ostrogorsky A.G. Film Thickness and Convection Coefficient Formulations of keff // J. Serbian Soc. Comput. Mech. 2012. V. 6. № 1. P. 97–107. http://www.sscm.kg.ac.rs/jsscm/downloads/Vol6No1/Vol6No1_07.pdf
  16. 16. Ostrogorsky A.G. Empirical Correlations for Natural Convection, Δ and keff // J. Cryst. Growth. 2015. V. 426. P. 38–48.
  17. 17. Voloshin A.E., Prostomolotov A.I., Verezub N.A. On the Accuracy of Analytical Models of Impurity Segregation during Directional Melt Crystallization and Their Applicability for Quantitative Calculations // J. Cryst. Growth. 2016. V. 453. P. 188–197.
  18. 18. Бокштейн Б.С., Ярославцев А.Б. Диффузия атомов и ионов в твердых телах. М.: МИСиС, 2005. 362 с.
  19. 19. Багоцкий В.С. Диффузионный слой // Физический энциклопедический словарь (в 5 томах). М.: Сов. энциклопедия, 1960. Т. 1. С. 621.
  20. 20. Багоцкий В.С. Основы электрохимиии. М.: Химия, 1988. 400 с.
  21. 21. Papirov I.I., Kravchenko A.I., Mazin A.I., Shiyan A.V., Virich V.D. Impurity distributions in a Magnesium Sublimates // Probl. At. Sci.Technol. 2016. № 1. P. 21–22. https://vant.kipt.kharkov.ua/
  22. 22. Кравченко А.И. Соотношение между эффективным и идеальным коэффициентами разделения при дистилляции и сублимации // Неорган. материалы. 2016. Т. 52. № 4. С. 423–430. https://doi.org/10.7868/S0002337X16040096
  23. 23. Воротынцев В.М., Мочалов Г.М., Трубянов М.М., Шабыкин Д.Н. Температурная зависимость коэффициента разделения в прерывистой дистилляции аммония в температурном интервале между нормальной температурой кипения и критической температурой // ТОХТ. 2014. Т. 48. № 1. С. 60–65. https://doi.org/10.7868/S0040357114010151
  24. 24. Кравченко А.И. Зависимость эффективного коэффициента разделения в некоторых металлических системах основа–примесь от степени перегонки // Неорган. материалы. 2015. Т. 51. № 2. С. 146–147. https://doi.org/10.1134/S0020168515010091
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека