RAS Chemistry & Material ScienceНеорганические материалы Inorganic Materials

  • ISSN (Print) 0002-337X
  • ISSN (Online) 3034-5588

Defect Formation in Gd3AlxGa5–xO12 (x = 1–3) and Gd3Al2Ga3O12:Ce Crystals

PII
10.31857/S0002337X23080055-1
DOI
10.31857/S0002337X23080055
Publication type
Status
Published
Authors
Volume/ Edition
Volume 59 / Issue number 8
Pages
871-877
Abstract
We present results of a detailed study of defect formation processes and their effect on the optical properties of gadolinium aluminum gallium garnet crystals with partial aluminum substitution for gallium in the cation sublattice—Gd3Al1Ga4O12 (Al : Ga = 1 : 4), Gd3Al2Ga3O12 (Al : Ga = 2 : 3), and Gd3Al3Ga2O12 (Al : Ga = 3 : 2) and cerium-doped crystals: Gd3Al2Ga3O12:Сe3+ (GAGG:Ce). X-ray photoelectron spectroscopy and X-ray fluorescence analysis data demonstrate gallium deficiency relative to the stoichiometric composition in all of the crystals studied. The results obtained are used to analyze processes underlying the formation of structural growth point defects in gadolinium aluminum gallium garnet crystals. F-centers have been shown to be the predominant point defect species. We also have demonstrated the formation of Schottky defects and V-centers. The formation of additional F-centers in cerium-doped garnet crystals is happening. The refractive indices and attenuation coefficients of the crystals have been shown to depend on the Al : Ga ratio and doping with cerium.
Keywords
<i>:</i> гранат степень окисления церия точечные дефекты <i>F</i>-центры дефекты Шоттки <i>V</i>-центры
Date of publication
01.08.2023
Year of publication
2023
Number of purchasers
0
Views
36

References

  1. 1. Kamada K., Yanagida T., Endo T., Tsutumi K., Usuki Y., Nikl M., Fujimoto Yu., Yoshikawa A. 2-inch Size Single Crystal Growth and Scintillation Properties of New Scintillator; Ce:Gd3Al2Ga3O12 // IEEE NSS/MIC. 2011. P. 1927–1929. https://doi.org/10.1109/NSSMIC.2011.6154387
  2. 2. Lecoq P. Development of New Scintillators for Medical Applications // Nucl. Instrum. Methods Phys. Res., Sect. A. 2016. V. 809. P. 130. https://doi.org/10.1016/j.nima.2015.08.041
  3. 3. Alenkov V., Buzanov O., Dosovitskiy G., Egorychev V., Fedorov A., Golutvin A., Guz Yu., Jacobsson R., Korjik M., Kozlov D., Mechinsky V., Schopper A., Semennikov A., Shatalov P., Shmanin E. Irradiation Studies of a Multi-Doped Gd3Al2Ga3O12 // Nucl. Instrum. Methods Phys. Res., Sect. A. 2019. V. 916. P. 226–229. https://doi.org/10.1016/j.nima.2018.11.101
  4. 4. Martinazzoli L. Crystal Fibers for the LHCb Calorimeter Upgrade // IEEE Trans. Nucl. Sci. 2020. V. 67. № 6. P. 1003–1008. https://doi.org/10.1109/TNS.2020.2975570
  5. 5. Dilillo G., Zampa N., Campana R., Fuschino F., Pauletta G., Rashevskaya I., Ambrosino F., Baruzzo M., Cauz D., Cirrincione D., Citossi M., Casa G. D., Di Ruzza B., Evangelista Y., Galgóczi G., Labanti C., Ripa J., Tommasino F., Verroi E., Fiore F., Vacchi A. Space Applications of GAGG:Ce Scintillators: a Study of Afterglow Emission by Proton Irradiation // Nucl. Instrum. Methods Phys. Res., Sect. B. 2022. V. 513. P. 33–43. https://doi.org/10.1016/j.nimb.2021.12.006
  6. 6. Ляпидевский В.К. Сцинтилляционный метод детектирования излучений. М.: Изд-во МИФИ, 1981. 88 с.
  7. 7. Kitaura M., Sato A., Kamada K., Ohnishi A., Sasaki M. Phosphorescence of Ce-Doped Gd3Al2Ga3O12 Crystals Studied Using Luminescence Spectroscopy // J. Appl. Phys. 2014. V. 115. № 8. P. 083517. https://doi.org/10.1063/1.4867315
  8. 8. Kamada K., Yanagida T., Endo T., Tsutumi K., Usuki Y., Nikl M., Fujimoto Yu., Fukabori A., Yoshikawa A. 2inch Diameter Single Crystal Growth and Scintillation Properties of Ce:Gd3Al2Ga3O12 // J. Cryst. Growth. 2012. V. 352. № 1. P. 88–90. https://doi.org/10.1016/j.jcrysgro.2011.11.085
  9. 9. Tyagi M., Meng F., Koschan M., Donnald S.B., Rothfuss H., Melcher C.L. Effect of Codoping on Scintillation and Optical Properties of a Ce-Doped Gd3Ga3Al2O12 Scintillator // J. Phys. D: Appl. Phys. 2013. V. 46. № 47. P. 475302. https://doi.org/10.1088/0022-3727/46/47/475302
  10. 10. Babin V., Bohacek P., Grigorjeva L., Kučera M., Nikl M., Zazubovich S., Zolotarjovs A. Effect of Mg2+ Ions Co-Doping on Luminescence and Defects Formation Processes in Gd3(Ga,Al)5O12:Ce Single Crystals // Opt. Mater. 2017. V. 66. P. 48–58. https://doi.org/10.1016/j.optmat.2017.01.039
  11. 11. Теплякова Н.А., Смирнов М.В., Сидоров Н.В., Палатников М.Н. Дефекты и некоторые физические свойства номинально чистых и легированных цинком кристаллов ниобата лития // Физика твердого тела. 2021. Т. 63. № 8. С. 1132–1140.
  12. 12. Арсеньев П.А., Ткачук Г.Н. Спектроскопические свойства ионов неодима в решетке кристаллов титаната гадолиния // Кристаллография. 2021. Т. 66. № 3. С. 458–460. https://doi.org/10.31857/S0023476121030048
  13. 13. Блистанов А.А. Кристаллы квантовой и нелинейной оптики: учебное пособие. М.: МИСиС, 2007. 432 с.
  14. 14. Fujimori K., Kitaura M., Taira Y., Fujimoto M., Zen H., Watanabe S., Kamada K., Okano Y., Katoh M., Hosaka M., Yamazaki J., Hirade T., Kobayashi Y., Ohnishi A. Visualizing Cation Vacancies in Ce:Gd3Al2Ga3O12 Scintillators by Gamma-Ray-Induced Positron Annihilation Lifetime Spectroscopy // Appl. Phys. Exp. 2020. V. 13. № 8. P. 085505. https://doi.org/10.35848/1882-0786/aba0dd
  15. 15. Meng F. Development and Improvement of Cerium Activated Gadolinium Gallium Aluminum Garnets Scintillators for Radiation Detectors by Codoping: PhD diss. Knoxville, 2015. 159 p.
  16. 16. Bohacek P., Krasnikov A., Kučera M., Nikl M., Zazubovich S. Defects Creation in the Undoped Gd3(Ga,Al)5O12 Single Crystals and Ce3+-Doped Gd3(Ga,Al)5O12 Single Crystals and Epitaxial Films under Irradiation in the Gd3+-Related Absorption Bands // Opt. Mater. 2019. V. 88. P. 601–605. https://doi.org/10.1016/j.optmat.2018.12.033
  17. 17. Yoshikawa A., Fujimoto Y., Yamaji A., Kurosawa S., Pejchal J., Sugiyama M., Wakahara S., Futami Y., Yokota Y., Kamada K., Yubuta K., Shishido T., Nikl M. Crystal Growth and Characterization of Ce:Gd3(Ga,Al)5O12 Single Crystal Using Floating Zone Method in Different O2 Partial Pressure // Opt. Mater. 2013. V. 35. № 11. P. 1882–1886. https://doi.org/10.1016/j.optmat.2013.02.021
  18. 18. Кузьмичева Г.М., Козликин С.Н., Жариков Е.В., Калитин С.П., Осико В.В. Точечные дефекты в гадолиний-галлиевом гранате // Журн. неорган. химии. 1988. Т. 33. № 9. С. 2200–2204.
  19. 19. Жариков Е.В., Лаптев В.В., Майер А.А., Осико В.В. Конкуренция катионов в октаэдрических положениях галлиевых гранатов // Изв. АН СССР. Неорган. материалы. 1984. Т. 20. № 6. С. 984–991.
  20. 20. Komar J., Solarz P., Jeżowski A., Głowacki M., Berkowski M., Ryba-Romanowski W. Investigation of Intrinsic and Extrinsic Defects in Solid Solution Gd3(Al, Ga)5O12 Crystals Grown by the Czochralski Method // J. Alloys Compd. 2016. V. 688. P. 96–103. https://doi.org/10.1016/j.jallcom.2016.07.139
  21. 21. Матковский А.О., Сугак Д.Ю., Улманис У.А., Савицкий В.Г. Центры окраски в редкоземельных галлиевых гранатах. Саласпилс: ЛАФИ, 1987. 42 с.
  22. 22. Забелина Е.В., Козлова Н.С., Гореева Ж.А., Касимова В.М. Многоугловые спектрофотометрические методы отражения для определения коэффициентов преломления // Изв. вузов. МЭТ. 2019. Т. 22. № 3. С. 168–178. https://doi.org/10.17073/1609-3577-2019-3-168-178
  23. 23. Lamoreaux R.H., Hildenbrand D.L., Brewer L. High-temperature Vaporization Behavior of Oxide II. Oxides of Be, Mg, Ca, Sr, Ba, B, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Zn, Cd and Hg // J. Phys. Chem. Ref. Data. 1987. V. 16. № 3. P. 419–443. https://doi.org/10.1063/1.555799
  24. 24. Physical and Scintillation Properties Furukawa Co [Электронный ресурс]. – 2014. – URL: http://furukawa-denshi.co.jp/cgi-bin/pdfdata/20140428162950.pdf (дата обращения: 06.01.2022).
  25. 25. Spassky D., Fedyunin F., Rubtsova E., Tarabrina N., Morozov V., Dzhevakov P., Chernenko K., Kozlova N., Zabelina E., Kasimova V., Buzanov O. Structural, Optical and Luminescent Properties of Undoped Gd3AlxGa5–xO12 (x = 0,1,2,3) and Gd2YAl2Ga3O12 Single Crystals // Opt. Mater. 2022. V. 25. P. 112079. https://doi.org/10.1016/j.optmat.2022.112079
  26. 26. Li M., Meng M., Chen J. Abnormal Site Preference of Al and Ga in Gd3Al2.3Ga2.7O12:Ce Crystals // Phys. Status Solidi B. 2021. V. 258. P. 2000603. https://doi.org/10.1002/pssb.202000603
  27. 27. Kanai T., Satoh M., Miura I. Characteristics of a Nonstoichiometric Gd3+δ(Al,Ga)5–δO12:Ce Garnet Scintillator // J. Am. Ceram. Soc. 2008. V. 91. № 2. P. 456–462. https://doi.org/10.1111/j.1551-2916.2007.02123.x
  28. 28. Krsmanovic R., Morozov V.A., Lebedev O.I., Polizzi S., Speghini A., Bettinelli M., Van Tendeloo G. Structural and Luminescence Investigation on Gadolinium Gallium Garnet Nanocrystalline Powders Prepared by Solution Combustion Synthesis // Nanotechnology. 2007. V. 18. P. 325604. https://doi.org/10.1088/0957-4484/18/32/325604
  29. 29. Касимова В.М., Козлова Н.С., Бузанов О.А., Забелина Е.В., Таргонский А.В., Рогачев А.В. Влияние частичного замещения галлия алюминием на свойства кристаллов гадолиний-алюминий-галлиевого граната // Неорган. материалы. 2022. Т. 58. № 3. С. 302–308. https://doi.org/10.31857/S0002337X2203006X
  30. 30. Шаскольская М.П. Кристаллография. М.: Высш. шк., 1984. 376 с.
  31. 31. Shannon R.D. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides // Acta Crystallogr. 1976. V. 32. № 5. P. 751–767. https://doi.org/10.1107/S0567739476001551
  32. 32. Pujats A., Springis M. The F-type Centers in YAG Crystals // OPA. 2001. V. 155. № 1–4. P. 65–69. https://doi.org/10.1080/10420150108214094
  33. 33. Полисадова Е.Ф., Тао Хан, Олешко В.И., Валиев Д.Т., Ваганов В.А., Шонши Д., Бураченко А.Г. Влияние концентрации церия на люминесцентные свойства Y3Al5O12:Ce при ультрафиолетовом возбуждении // Фундаментальные исследования. 2017. № 12-1. С. 103–109. https://doi.org/10.17513/fr.41987
  34. 34. Зоренко Ю.В., Савчин В.П., Горбенко В.И., Возняк Т.И., Зоренко Т.Е., Пузиков В.М., Данько А.Я., Нижанковский С.В. Люминесценция и сцинтилляционные свойства монокристаллов и монокристаллических пленок Y3Al5O12:Cе // Физика твердого тела. 2011. Т. 53. № 8. С. 1542–1547. eLIBRARY ID: 20322140
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library