RAS Chemistry & Material ScienceНеорганические материалы Inorganic Materials

  • ISSN (Print) 0002-337X
  • ISSN (Online) 3034-5588

Structure and Phase Formation in the Ni–Al–Co System during Self-Propagating High-Temperature Synthesis

PII
10.31857/S0002337X23070151-1
DOI
10.31857/S0002337X23070151
Publication type
Status
Published
Authors
Volume/ Edition
Volume 59 / Issue number 7
Pages
733-739
Abstract
This paper reports on structure and phase formation of a Ni–Al–Co based alloy prepared by self-propagating high-temperature synthesis. The maximum combustion temperature was 1020°C in argon and 913°C in vacuum. The phase composition of the synthesized alloy includes a Ni0.7Co0.3 solid solution with a cubic (Pm m) crystal lattice. Its microstructural constituents based on γ- and β-phases are 10–20 μm in size, and γ + β interlayers located on the interface between the γ- and β-phases are up to 1–2 μm in thickness. The alloy offers high plasticity, and its compressive strength is 451 MPa. Its low remanence, low coercive force, and high saturation magnetization indicate that the alloy is a soft magnetic material. It has a coercive force Hc = 146 Oe, remanent magnetization σr = 0.35 emu/g, and saturation magnetization σs = 36.76 emu/g.
Keywords
самораспространяющийся высокотемпературный синтез микроструктура интерметаллидный сплав твердый раствор
Date of publication
15.09.2025
Year of publication
2025
Number of purchasers
0
Views
3

References

  1. 1. Kainuma R., Ise M., Jia C.-C., Ohtani H., Ishida K. Phase Equilibria in the Al-Co-Ni Alloy System // J. Phase Equilib. Diffus. 2017. V. 38. P. 630–645. https://doi.org/10.1007/s11669-017-0586-z
  2. 2. Koneva N.A., Potekaev A.I., Nikonenko E.L., Popova N.A., Klopotov A.A., Klopotov V.D. Structure and Phase Composition of Heat-Resistant Ni–Al–Co Alloy after Annealing and Creep // Russ. Phys. J. 2019. V. 61. № 12. P. 2218–2224. https://doi.org/10.1007/s11182-019-01658-3
  3. 3. Oikawa K., Wulff L., Iijima T., Gejima F., Ohmori T., Fujita A., Fukamichi K., Kainuma R., Ishida K. Promising Ferromagnetic Ni–Co–Al Shape Memory Alloy System // Appl. Phys. Lett. 2001. V. 79. P. 3290–3292. https://doi.org/10.1063/1.1418259
  4. 4. Tanaka Y., Ohmori T., Oikawa K., Kainuma R., Ishida K. Ferromagnetic Co-Ni-Al Shape Memory Alloys with β + γ Two-Phase Structure // Mater. Trans. 2004. V. 45. № 2. P. 427–430. https://doi.org/10.2320/matertrans.45.427
  5. 5. Xu Y., Kameoka S., Kishida K., Demura M., Tsai A., Hirano T. Catalytic Properties of Ni3Al Intermetallics for Methanol Decomposition // Mater. Trans. 2004. V. 45. № 11. P. 3177–3179https://doi.org/10.2320/matertrans.45.3177
  6. 6. Kimura Y., Suzuki T., Mishima Y. Microstructure and Mechanical Properties of B2 (Co,Ni)Al Based Alloys // MRS Online Proceedings Library. 1992. V. 288. P. 697–702. https://doi.org/10.1557/PROC-288-697
  7. 7. Kimura Y., Elmer H. Lee, Liu C.T. Microstructure, Phase Constitution and Tensile Properties of Co–Ni–Ti–Al Based Multi-Phase Alloys // Mater. Trans. 1995. V. 36. № 8. P. 1031–1040.
  8. 8. Летников М.Н., Ломберг Б.С., Овсепян С.В. Исследование композиций системы Ni–Al–Co при разработке нового жаропрочного деформируемого интерметаллидного сплава // Научно-технический журн. “Труды ВИАМ”. 2013. № 10. С. 1.
  9. 9. Kositsyna I.I., Zavalishin V.A. Study of Co-Ni-Al Alloys with Magnetically Controlled Shape Memory Effect // Mater. Sci. Forum. 2009. V. 635. P. 75–80. https://doi.org/10.4028/www.scientific.net/MSF.635.75
  10. 10. Raghavan V. Al−Co−Ni (Aluminum−Cobalt−Nickel) // J. Phase Equilib. Diffus. 2006. V. 27. P. 372–380. https://doi.org/10.1007/s11669-006-0009-z
  11. 11. Zhou Y., Nash P., Bessa S.M. et al. Phase Equilibria in the Al-Co-Ni Alloy System // J. Phase Equilib. Diffus. 2017. V. 38. P. 630–645.https://doi.org/10.1007/s11669-017-0586-z
  12. 12. Поварова Л.Б., Филин С.А., Масленков С.Б. Фазовые равновесия с участием β-фазы в системах Ni–Al–Me (Me-Co, Fe, Mn, Cu) при 900 и 1100°C // Металлы. 1993. № 1. С. 191–205.
  13. 13. Mishima Y., Ochiai S., Suzuki T. Lattice Parameters of Ni(γ), Ni3Al(γ') and Ni3Ga(γ') Solid Solutions with Additions of Transition and B-Subgroup Elements // Acta Metall. 1985. V. 33. № 6. P. 1161–1169. https://doi.org/10.1016/0001-6160 (85)90211-1
  14. 14. Merzhanov A.G., Borovinskaya I.P. Self-Propagating High-temperature Synthesis of Refractory Inorganic Compounds // Dokl. Akad. Nauk SSSR. 1972. V. 204. № 2. P. 366–369.
  15. 15. Корчагин М.А., Бохонов Б.Б. Самораспространяющийся высокотемпературный синтез квазикристаллов // Физика горения и взрыва. 2004. Т. 40. № 4. С. 74–81.
  16. 16. Alkan M., Sonmez S., Bora Derin B., Yücel O., Andreev D., Sanin V., Yukhvid V. Production of Al–Co–Ni Ternary Alloys by the SHS Method for Use in Nickel Based Superalloys Manufacturing // High Temp. Mater. Proc. 2015. V. 34. № 3. P. 275–283. https://doi.org/10.1515/htmp-2014-0052
  17. 17. Isothermal Section at 1100°C. Fig. 4 from Al–Co–Ni Ternary Phase Diagram Evaluation. https://materials.springer.com/msi/phase-diagram/docs/sm_msi_r_10_011478_01_full_LnkDia3 https://doi.org/10.11478.1.8 (MSI Materials Science International Services GmbH, Stuttgart © 1991).
  18. 18. Лякишев Н.П. Диаграммы состояния двойных металлических систем: Справочник / Под ред. Лякишева Н.П. М.: Машиностроение, 1996–2000.
  19. 19. Косицын С.В., Косицына И.И., Валиуллин А.И., Катаева Н.В., Завалишин В.А. Ферромагнитные сплавы Co–Ni–Al с термоупругим мартенситным превращением // Перспективные материалы. 2005. Т. 3. С. 56–61.
  20. 20. Valiullin A.I., Kositsin S.V., Kositsina I.I., Kataeva N.V., Zavalishin V.A. Study of Ferromagnetic Co–Ni–Al Alloys with Thermoelastic L10-Martensite // Mater. Sci. Eng. A. 2006. V. 438–440. P. 1041–1044.
  21. 21. Mazeeva A., Kim A., Ozerskoi N. et al. Structure Evolution of Ni36Al27Co37 Alloy in the Process of Mechanical Alloying and Plasma Spheroidization // Metals. 2021. V. 11. P. 1557–1571.https://doi.org/10.3390/met11101557
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library