RAS Chemistry & Material ScienceНеорганические материалы Inorganic Materials

  • ISSN (Print) 0002-337X
  • ISSN (Online) 3034-5588

Composition and Structure of Mn/Sr-Cosubstituted Tricalcium Phosphate Prepared by Solid-State Synthesis

PII
10.31857/S0002337X23070047-1
DOI
10.31857/S0002337X23070047
Publication type
Status
Published
Authors
Volume/ Edition
Volume 59 / Issue number 7
Pages
796-800
Abstract
Unsubstituted tricalcium phosphate (TCP) and Mn/Sr-cosubstituted TCP have been prepared by solid-state synthesis at 1200°C. The synthesized compounds have been characterized by X-ray diffraction, IR spectroscopy, and scanning electron microscopy. The results indicate that solid-state synthesis of TCP and Mn,Sr-TCP yields compounds with the whitlockite structure. We have determined their lattice parameters and demonstrated the incorporation of the manganese and strontium ions into the structure of TCP.
Keywords
трикальцийфосфат двойное замещение твердофазный синтез
Date of publication
14.09.2025
Year of publication
2025
Number of purchasers
0
Views
3

References

  1. 1. Eliaz N., Metoki N. Calcium Phosphate Bioceramics: a Review of Their History, Structure, Properties, Coating Technologies and Biomedical Applications // Materials. 2017. V. 10. № 4. P. 334. https://doi.org/10.3390/ma10040334
  2. 2. Bohner M., Santoni B.L.G., Döbelin N. β-tricalcium Phosphate for Bone Substitution: Synthesis and Properties // Act. Biomater. 2020. V.113. P. 23–41. https://doi.org/10.1016/j.actbio.2020.06.022
  3. 3. Schumacher M., Gelinsky M. Strontium Modified Calcium Phosphate Cements – Approaches Towards Targeted Stimulation of Bone Turnover // J. Mater. Chem. B. 2015. V. 3. № 23. P. 4626–4640. https://doi.org/10.1039/c5tb00654f
  4. 4. Schumacher M., Wagner A.S., Kokesch-Himmelreich J., Bernhardt A., Rohnke M., Wenisch S., Gelinsky M. Strontium Substitution in Apatitic CaP Cements Effectively Attenuates Osteoclastic Resorption but Does not Inhibit Osteoclastogenesis // Act. Biomater. 2016. V. 37. P. 184–194. https://doi.org/10.1016/j.actbio.2016.04.016
  5. 5. Montesi M., Panseri S., Dapporto M., Tampieri A., Sprio S. Sr-Substituted Bone Cements Direct Mesenchymal Stem Cells, Osteoblasts and Osteoclasts Fate // PLoS One. 2017. V. 12. № 2. P. 1–13. https://doi.org/10.1371/journal.pone.0172100
  6. 6. Laskus A., Kolmas J. Ionic Substitutions in Non-Apatitic Calcium Phosphates // Int. J. Mol. Sci. 2017. V. 18. № 12. P. 2542. https://doi.org/10.3390/ma10040334
  7. 7. Kannan S., Goetz-Neunhoeffer F., Neubauer J., Pina S., Ferreira J. M. F. Synthesis and Structural Characterization of Strontium- and Magnesium-Co-Substituted β-Tricalcium Phosphate // Act. Biomater. 2010. V. 6. № 2. P. 571–576.https://doi.org/10.1016/j.actbio.2009.08.009
  8. 8. He F., Qiu C., Wang Y., Lu T., Ye J. Synthesis, Characterization and Cell Response of Silicon/Gallium Co-Substituted Tricalcium Phosphate Bioceramics // J. Mater. Sci. 2022. V. 57. P. 1302–1313. https://doi.org/doi.org/10.1007/s10853-021-06584-9
  9. 9. Kannan S., Goetz-Neunhoeffer F., Neubauer J., Ferreira J.M. Cosubstitution of Zinc and Strontium in β-Tricalcium Phosphate: Synthesis and Characterization // J. Am. Ceram. Soc. 2011. V. 94. № 1. P. 230–235. https://doi.org/10.1111/j.1551-2916.2010.04070.x
  10. 10. Sinusaite L., Popov A., Antuzevics A., Mazeika K., Baltrunas D., Yan, J.-Ch., Horng J.L., Shi Sh., Sekino T., Ishikawa K., Kareiva A., Zarkov A. Fe and Zn Co-Substituted Beta-Tricalcium Phosphate (β-TCP): Synthesis, Structural, Magnetic, Mechanical and Biological Properties // Mater. Sci. Eng. C. 2020. V. 112. P. 110918. https://doi.org/10.1016/j.msec.2020.110918
  11. 11. Parra J., Garcia Paez I.H., De Aza A.H., Baudin C., Rocio Martin M., Pena P. In Vitro Study of the Proliferation and Growth of Human Fetal Osteoblasts on Mg and Si Co-Substituted Tricalcium Phosphate Ceramics // J. Biomed. Mater. Res. A. 2017. V. 105. № 8. P. 2266–2275.https://doi.org/10.1002/jbm.a.36093
  12. 12. Braux J., Velard F., Guillaume C., Bouthors S., Jallot E., Nedelec J.M., Laurent-Maquin D., Laquerrière P. A New Insight into the Dissociating Effect of Strontium on Bone Resorption and Formation // Act. Biomater. 2011. V. 7. № 6. P. 2593–603. https://doi.org/10.1016/j.actbio.2011.02.013
  13. 13. Rau J.V., Fadeeva I.V., Fomin A.S., Barbaro K., Galvano E., Ryzhov A.P., Murzakhanov F., Gafurov M., Orlinskii S., Antoniac I., Uskokovic V. Sic Parvis magna: Manganese-Substituted Tricalcium Phosphate and Its Biophysical Properties // ACS Biomater. Sci. Eng. 2019. V. 5. № 12. P. 6632–6644. https://doi.org/10.1021/acsbiomaterials.9b01528
  14. 14. Fadeeva I.V., Kalita V.I., Komlev D.I., Radiuk A.A., Fomin A.S., Davidova G.A., Fursova N.K., Murzakhanov F.F., Gafurov M.R., Fosca M., Antoniac I.V., Barinov S.M., Rau J. V. In Vitro Properties of Manganese-Substituted Tricalcium Phosphate Coatings for Titanium Biomedical Implants Deposited by Arc Plasma // Materials. 2020. V. 13. № 19. P. 4411–4414. https://doi.org/10.3390/ma13194411
  15. 15. Rau J.V., Fadeeva I.V., Forysenkova A.A., Davydova G.A., Fosca M., Filippov Y.Y., Antoniac I.V., Antoniac A., D’Arco A., Di Fabricio M., Petrarca M., Lupi S., Di Menno Di Bucchianico M., Yankova V.G., Putlyaev V.I., Cristea M.B. Strontium Substituted Tricalcium Phosphate Bone Cement: Short and Long-Term Time-Resolved Studies and In Vitro Properties // Adv. Mater. Interf. 2022. V. 9. № 21. P. 2200803. https://doi.org/10.1002/admi.202200803
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library