RAS Chemistry & Material ScienceНеорганические материалы Inorganic Materials

  • ISSN (Print) 0002-337X
  • ISSN (Online) 3034-5588

Monolithic Ni/LiNbO3 Structures with an Interfacial Magnetoelectric Effect

PII
10.31857/S0002337X23060179-1
DOI
10.31857/S0002337X23060179
Publication type
Status
Published
Authors
Volume/ Edition
Volume 59 / Issue number 6
Pages
624-630
Abstract
Layered structures in the form of submicron-thick nickel layers on single-crystal lithium niobate (LiNbO3) ferroelectric substrates have been produced by ion beam sputter deposition. At room temperature, the structures exhibit an interfacial magnetoelectric effect, whose largest magnitude is 108 mV/A in a transverse configuration of the magnetic and electric fields and 4 mV/A in a longitudinal configuration. Analysis of mechanical strain leads us to conclude that the interface makes a considerable contribution to magnetoelectric interaction in the Ni/LiNbO3 structures obtained in this study. The materials can find application in designing piezoelectric devices and acoustic, optical, and spin wave electronics.
Keywords
ионно-лучевое распыление–осаждение слоистые структуры ферромагнетик/сегнетоэлектрик интерфейс ферромагнетик/сегнетоэлектрик ниобат лития магнитоэлектрический эффект
Date of publication
14.09.2025
Year of publication
2025
Number of purchasers
0
Views
4

References

  1. 1. Volk T., Wöhlecke M. Lithium Niobate: Defects, Photorefraction and Ferroelectric Switching. Berlin: Springer, 2009. P. 1–9. ISBN 978-3-540-70765-3https://doi.org/10.1007/978-3-540-70766-0
  2. 2. Shur V.Y. Lithium Niobate and Lithium Tantalate-based Piezoelectric Paterials, in Advanced Piezoelectric Materials: Science and Technology. Cambridge: Woodhead, 2010. P. 204–238. https://doi.org/10.1533/9781845699758.1.204
  3. 3. Sánchez-Dena O., Fierro-Ruiz C.D., Villalobos-Mendoza S.D., Flores D.M.C., Elizalde-Galindo J.T., Farías R. Lithium Niobate Single Crystals and Powders Reviewed − Part I // Crystals. 2020. V. 10. P. 973–32. https://doi.org/10.3390/cryst10110973
  4. 4. Li M., Ling J., He Y., Javid U., Xue Sh., Lin Q. Lithium Niobate Photonic-Crystal Electro-Optic Modulator // Nat. Comun. 2020. V. 11. P. 4123–8. https://doi.org/10.1038/s41467-020-17950-7
  5. 5. Zhu D., Shao L., Yu M., Cheng R., Desiatov B., Xin C.J., Hu Y., Holzgrafe J., Ghosh S., Shams-Ansari A., Puma E., Sinclair N., Reimer Ch., Zhang M., Lončar M. Integrated Photonics on Thin-Film Lithium Niobate // Adv. Opt. Photon. 2021. V. 13 № 2. P. 242–352. https://doi.org/10.1364/AOP.411024
  6. 6. https://www.korth.de/en/materials/detail/Lithium%20Niobate, 2022 (accessed 12 August 2022).
  7. 7. Nan C.-W., Bichurin M.I., Dong S., Viehland D., Srinivasan G. Multiferroic Magnetoelectric Composites: Historical Perspective, Status, and Future Directions // J. Appl. Phys. 2008. V. 103. P. 031101-35. https://doi.org/10.1063/1.2836410
  8. 8. Channagoudra G., Dayal V. Magnetoelectric Coupling in Ferromagnetic/Ferroelectric Heterostructures: A Survey and Perspective // J. Alloys Compd. 2022. V. 928. P. 167181. https://doi.org/10.1016/j.jallcom.2022.167181
  9. 9. Kumar A., Kaur D. Magnetoelectric Heterostructures for Next-Generation MEMS Magnetic Field Sensing Applications // J. Alloys Compd. 2022. V. 897. P. 163091. https://doi.org/10.1016/j.jallcom.2021.163091
  10. 10. Bundesmann C., Neumann H. Tutorial: The Systematics of Ion Beam Sputtering for Deposition of Thin Films with Tailored Properties // J. Appl. Phys. 2018. V. 124. P. 231102-17. https://doi.org/10.106 /1.5054046
  11. 11. Sharko S.A., Serokurova A.I., Novitskii N.N., Poddubnaya N.N., Ketsko V.A., Stognij A.I. Elastically Stressed State at the Interface in the Layered Frromagnetic / Ferroelectric Structures with Magnetoelectric Effect // Ceram. Int. 2022. V. 48. № 9. P. 12387–12394. https://doi.org/10.1016/j.ceramint.2022.01.103
  12. 12. Srinivasan G., Fetisov Y.K., Fetisov L.Y. Influence of Bias Electrical Field on Magnetoelectric Interactions in Ferromagnetic-Piezoelectric Layered Structures // Appl. Phys. Lett. 2009. V. 94. P. 132507-3. https://doi.org/10.1063/1.3114406
  13. 13. Fetisov L.Y., Chashin D.V., Fetisov Y.K., Segalla A.G., Srinivasan G. Resonance Magnetoelectric Effects in a Layered Composite under Magnetic and Electrical Excitations // J. Appl. Phys. 2012. V. 112. P. 014103-6. https://doi.org/10.1063/1.4733466
  14. 14. International Centre for Diffraction Data, 2023, JCDD. https://www.icdd.com.
  15. 15. Kittel Ch., Hook J. Introduction to Solid State Physics. University of California: Wiley, 2017. 752 p.
  16. 16. Stognij A.I., Novitskii N.N., Trukhanov S.V., Trukhanov A.V., Panina L.V., Sharko S.A., Serokurova A.I., Poddubnaya N.N., Ketsko V.A., Dyakonov V.P., Szymczak H., Singh C., Yang Y. Interface Magnetoelectric Effect in Elastically Linked Co/PZT/Co Layered Structures // J. Magn. Magn. Mater. 2019. V. 485. P. 291–296. https://doi.org/10.1016/j.jmmm.2019.04.006
  17. 17. Sharko S.A., Serokurova A.I., Novitskii N.N., Ketsko V.A., Stognij A.I. Continuous Ferrimagnetic Y3Fe5O12 Layers on the Ceramic PbZr0.45Ti0.55O3 Substrates // Ceram. Int. 2020. V. 46. № 14. P. 22049–22056. https://doi.org/10.1016/j.ceramint.2020.05.210
  18. 18. Grigoriev I.S., Meilikhov E.Z., Radzig A.A. Handbook of Physical Quantities. Boca Raton: CRC, 1996.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library