RAS Chemistry & Material ScienceНеорганические материалы Inorganic Materials

  • ISSN (Print) 0002-337X
  • ISSN (Online) 3034-5588

Fabrication of Nanogratings and Rewriting of Birefringent Structures in Nanoporous Glass

PII
10.31857/S0002337X23060155-1
DOI
10.31857/S0002337X23060155
Publication type
Status
Published
Authors
Volume/ Edition
Volume 59 / Issue number 6
Pages
677-681
Abstract
The dynamics of the variation in the structure of laser-induced birefringent regions in nanoporous glass have been studied in relation to the number of writing femtosecond laser pulses. We have detected transformation of an elliptical cavity elongated across the writing laser beam polarization into a birefringent nanograting, accompanied by an increase in retardance. The feasibility of rewriting such structures by changing the orientation of their slow axis of birefringence has been demonstrated, which suggests that high-silica nanoporous glasses are potentially attractive for use as data storage media, with the possibility of rewriting.
Keywords
<i>:</i> нанопористое стекло двулучепреломление формы лазерная микрообработка фемтосекундный лазер
Date of publication
01.06.2023
Year of publication
2023
Number of purchasers
0
Views
32

References

  1. 1. Hood H.P., Nordberg M.E. US Patent 2106744. 1934.
  2. 2. Janowski F., Enke D. Porous Glasses. Part of Handbook of Porous Solids. N.Y.: Wiley-VCH, 2002.
  3. 3. Антропова Т.В., Вейко В.П., Костюк Г.К., Гирсова М.А., Анфимова И.Н., Чуйко В.А., Яковлев Е.Б. Особенности формирования планарных микрооптических элементов на подложках из пористого стекла под действием лазерного излучения и последующего спекания // Физика и химия стекла. 2012. Т. 38. № 6. С. 699–717.
  4. 4. Xia J., Chen D., Qiu J., Zhu C. Rare-Earth-Doped Silica Microchip Laser Fabricated by Sintering Nanoporous Glass // Opt. Lett. 2005. V. 30. № 1. P. 47–49. https://doi.org/10.1364/OL.30.000047
  5. 5. Veiko V.P., Zakoldaev R.A., Sergeev M.M., Danilov P.A., Kudryashov S.I., Kostiuk G.K., Sivers A.N., Ionin A.A., Antropova T.V., Medvedev O.S. Direct Laser Writing of Barriers with Controllable Permeability in Porous Glass // Opt. Express. 2018. V. 26. № 21. P. 28150–28160. https://doi.org/10.1364/OE.26.028150
  6. 6. Lijing Z., Zakoldaev R.A., Sergeev M.M., Petrov A.B., Veiko V.P., Alodjants A.P. Optical Sensitivity of Waveguides Inscribed in Nanoporous Silicate Framework // Nanomaterials. 2021. V. 11. P. 123 1–14. https://doi.org/10.3390/nano11010123
  7. 7. Lijing Z., Zakoldaev R.A., Sergeev M.M., Veiko V.P. Fluorescent Bulk Waveguide Sensor in Porous Glass: Concept, Fabrication, and Testing // Nanomaterials. 2020. V. 10. P. 2169. 1–12. https://doi.org/10.3390/nano10112169
  8. 8. Liao Y., Ni J., Qiao L., Huang M., Bellouard Y., Sugioka K., Cheng Y. Formation of Nanogratings in a Porous Glass Immersed in Water by Femtosecond Laser Irradiation // Laser Applications in Microelectronic and Optoelectronic Manufacturing (LAMOM) XX. 2015. V. 9350. P. 93500G. https://doi.org/10.1117/12.2076905
  9. 9. Liao Y., Cheng Y., Liu C., Song J., He F., Shen Y., Chen D., Xu Z., Fan X., Wei X., Sugioka K., Midorikawa K. Direct Laser Writing of sub-50 nm Nanofluidic Channels Buried in Glass for Three-Dimensional Micro-Nanofluidic Integration // Lab Chip. 2013. V. 8. P. 1626–1631. https://doi.org/10.1039/C3LC41171K
  10. 10. Liao Y., Song J., Li E., Luo Y., Shen Y., Chen D., Xu Z., Sugioka K., Midorikawa K. Rapid Prototyping of Three-Dimensional Microfluidic Mixers in Glass by Femtosecond Laser Direct Writing // Lab Chip. 2012. V. 12. P. 746–749. https://doi.org/10.1039/C2LC21015K
  11. 11. Lipatiev A.S., Fedotov S.S., Okhrimchuk A.G., Lotarev S.V., Vasetsky A.M., Stepko A.A., Shakhgildyan G.Yu., Piyanzina K.I., Glebov I.S., Sigaev V.N. Multilevel data writing in nanoporous glass by a few femtosecond laser pulses // Appl. Opt. 2018. V. 57. P. 978–982. https://doi.org/10.1364/AO.57.000978
  12. 12. Fedotov S.S., Okhrimchuk A.G., Lipatiev A.S., Stepko A.A., Piyanzina K.I., Shakhgildyan G.Yu., Glebov I.S., Lotarev S.V., Sigaev V.N. 3-Bit Writing of Information in Nanoporous Glass by a Single Sub-Microsecond Burst of Femtosecond Pulses // Opt. Lett. 2018. V. 43. P. 851–854. https://doi.org/10.1364/OL.43.000851
  13. 13. Shimotsuma Y., Kazansky P.G., Qiu J., Hirao K. Self-Assembled Nanogratings in Glass Irradiated by Ultrashort Light Pulses. Physical Review Letters // Phys. Rev. Lett. 2003. V. 91. P. 247405. https://doi.org/10.1103/PhysRevLett.91.247405
  14. 14. Bricchi E., Klappauf B.G., Kazansky P.G. Form Birefringence and Negative Index Change Created by Femtosecond Direct Writing in Transparent Materials // Opt. Lett. 2004. V. 29. P. 119–121. https://doi.org/10.1364/OL.29.000119
  15. 15. Zhang J., Gecevicius M., Beresna M., Kazansky P.G. Seemingly Unlimited Lifetime Data Storage in Nanostructured Glass // Phys. Rev. Lett. 2014. V. 112. P. 033901. https://doi.org/10.1103/PhysRevLett.112.033901
  16. 16. Fedotov S.S., Lipatiev A.S., Presniakov M.Yu., Shakhgildyan G.Yu., Okhrimchuk A.G., Lotarev S.V., Sigaev V.N. Laser-Induced Cavities with a Controllable Shape in Nanoporous Glass // Opt. Lett. 2020. V. 45. P. 5424–5427. https://doi.org/10.1364/OL.398090
  17. 17. Sakakura M., Lei Y., Wang L., Yu Y., Kazansky P.G. Ultralow-Loss Geometric Phase and Polarization Shaping by Ultrafast Laser Writing in Silica Glass // Light Sci. Appl. 2020. V. 9. P. 1–10. https://doi.org/10.1038/s41377-020-0250-y
  18. 18. Rudenko A., Colombier J.-P., Itina T.E. From Random Inhomogeneities to Periodic Nanostructures Induced in Bulk Silica by Ultrashort Laser // Phys. Rev. B. 2016. V. 93. P. 075427. https://doi.org/10.1103/PhysRevB.93.075427
  19. 19. Bhardwaj V.R., Simova E., Rajeev P.P., Hnatovsky C., Taylor R.S., Rayner D.M., Corkum P.B. Optically Produced Arrays of Planar Nanostructures inside Fused Silica // Phys. Rev. Lett. 2006. V. 96. P. 057404. https://doi.org/10.1103/PhysRevLett.96.057404
  20. 20. Taylor R.S., Hnatovsky C., Simova E., Rajeev P.P., Rayner D.M., Corkum P.B. Femtosecond Laser Erasing and Rewriting of Self-Organized Planar Nanocracks in Fused Silica Glass // Opt. Lett. 2007. V. 32. P. 2888–2890. https://doi.org/10.1364/OL.32.002888
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library