- PII
- 10.31857/S0002337X2306009X-1
- DOI
- 10.31857/S0002337X2306009X
- Publication type
- Status
- Published
- Authors
- Volume/ Edition
- Volume 59 / Issue number 6
- Pages
- 672-676
- Abstract
- Properties of porous materials prepared from glasses of the Na2O–B2O3–SiO2–GeO2 system have been studied using low-temperature nitrogen adsorption/desorption measurements. The results demonstrate that germanium substitution for silicon in the glasses studied leads to an increase in pore volume at SiO2/GeO2 ratios of down to 0.5. The porous glass with this composition has the largest specific surface area and micro- and mesopore volumes. We assume that the observed changes in the porosity parameters of glass in the case of complete germanium substitution for silicon are related to structural features of the borogermanate glass network, associated with B–O–B bond breaking and the formation of non-bridging oxygen atoms.
- Keywords
- пористые стекла характеристики пористых материалов щелочные борогерманосиликатные стекла
- Date of publication
- 14.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 4
References
- 1. Zhu B., Zhang Z., Zhang W., Wu Y., Zhang J., Imran Z., Zhang D. Synthesis and Applications of Porous Glass // J. Shanghai Jiaotong Univ. (Sci.). 2019. V. 24. № 6. P. 681–698. https://doi.org/10.1007/s12204-019-2131-1
- 2. Kumar A., Sudipta Murugavel S. Influence of Textural Characteristics on Biomineralization Behavior of Mesoporous SiO2–P2O5–CaO Bioactive Glass and Glass-ceramics // Mater. Chem. Phys. 2020. V. 242. P. 122511. https://doi.org/10.1016/j.matchemphys.2019.122511
- 3. Firuzeh M., Labbaf S., Sabouri Z. A Facile Synthesis of Mono-dispersed, Spherical and Mesoporous Bioactive Glass Nanoparticles for Biomedical Applications // J. Non-Cryst. Solids. 2021. V. 554. P. 120598. https://doi.org/10.1016/j.jnoncrysol.2020.120598
- 4. Burunkova J.A., Alkhalil G., Veniaminov A.V., Csarnovics I., Molnar S., Kokenyesi S. Arsenic Trisulfide-Doped Silica-Based Porous Glass // Opt. Laser Tech. 2022. V. 147. P. 107658. https://doi.org/10.1016/j.optlastec.2021.107658
- 5. Ibrahim M.H., Mustaffar M.I., Ismail S.A., Ismail A.N. A Review of Porous Glass-Ceramic Production Process, Properties and Applications // J. Phys. Conf. Ser. 2022. V. 2169. № 1. P. 012042. https://doi.org/10.1088/1742-6596/2169/1/012042
- 6. Милинский А.Ю., Барышников С.В., Чернечкин И.А. Диэлектрические и тепловые свойства нанокомпозита нитрат цезия – пористое стекло // Изв. вузов. Физика. 2022. Т. 65. № 9. С. 15–19.
- 7. Фиронов Я.С., Мельников И.В., Надеждин Е.Р., Токарев В.Н. Лазерное сверление пористой алюмосиликатной керамики // Стекло и керамика. 2021. № 1. С. 28–35.
- 8. Macedo P.B., Litovitz T.A. Method of Producing Optical Wave Guide Fibers^ Патент USA № 3,938,974. 462,481. Заяв. от 22.04.1974, 1976.
- 9. Morimoto S. Porous Glass: Preparation and Properties // Key Eng. Mater. 1995. V. 115. P. 147–158. https://doi.org/10.4028/www.scientific.net/KEM.115.147
- 10. Антропова Т.В., Калинина С.В., Костырева Т.Г., Дроздова И.А., Анфимова И.Н. Особенности процесса получения и структура пористых мембран на основе двухфазных фтор- и фосфорсодержащих натриевоборосиликатных стекол // Физика и химия стекла. 2015. Т. 44. № 1. С. 25–41.
- 11. Евстрапов А.А., Есикова Н.А., Антропова Т.В. Исследование пористых стекол методами оптической спектроскопии // Опт. журн. 2008. Т. 74. № 4. С. 71–77.
- 12. Крейсберг В.А., Антропова Т.В., Калинина С.В. Формирование микро- и мезопористой подструктур в процессе выщелачивания двухфазного щелочно-боросиликатного стекла // Физика и химия стекла. 2014. Т. 40. № 3. С. 508–513.
- 13. Ertuş E.B., Vakifahmetoglu C., Öztürk A. Production and Properties of Phase Separated Porous Glass // Ceram. Int. 2020. V. 46. № 4. P. 4947–4951. https://doi.org/10.1016/j.ceramint.2019.10.232
- 14. Janowski F., Enke D. Porous Glasses // Handbook of Porous Solids. 2002. P. 1432–1542.
- 15. Гавронская Ю.Ю., Пак В.Н. Наноструктурированные материалы на основе пористого стекла // Фундаментальные исследования. 2015. Т. 2. № 2. С. 261–266.
- 16. Rysiakiewicz-Pasek E. et al. An Insight into Inorganic Glasses and Functional Porous Glass-based Nanocomposites // Mater. Chem. Phys. 2020. V. 243. P. 122585. https://doi.org/10.1016/j.matchemphys.2019.122585
- 17. Мазурин О.В., Роскова Г.П., Аверьянов В.И., Антропова Т.В. Двухфазные стекла: структура, свойства, применение. Л.: Наука, 1991. 275 с.
- 18. Роусон Г. Неорганические стеклообразующие системы. М.: Мир, 1970. 312 с.
- 19. Власов А.Г., Флоринская В.А. Инфракрасные спектры неорганических стекол и кристаллов. М.: Химия, 1972. 304 с.
- 20. Koroleva O.N., Ivanova T.N. Raman Spectroscopy of the Structures of Li2O-SiO2 and Li2O-GeO2 Melts // Russ. Metall. (Metally). 2014. V. 2014. № 2. P. 140–146. https://doi.org/10.1134/S0036029514020098
- 21. Korobatova N.M., Koroleva O.N. Structural Variations of Germanosilicate Glasses with Change in Modifier Cation Type or Ge/Si Ratio // Spectrochim. Acta, Part A. 2020. V. 237. P. 118361. https://doi.org/10.1016/j.saa.2020.118361
- 22. Дембовский С.А., Чечеткина Е.А. Стеклообразование. М.: Наука, 1990. 279 с.
- 23. Yiannopoulos Y., Varsamis C., Kamitsos E. Medium Range Order in Glass and the 'Germanate Anomaly’ Effect // Chem. Phys. Lett. 2002. V. 359. P. 246. https://doi.org/10.1016/S0009-2614 (02)00668-1
- 24. Tsu R. Structural Characterization of Amorphous Silicion and Germanium // Sol. Cells. 1987. V. 21. P. 19–24.
- 25. Chambouleyron I., Comedi D., Sujan G.K. Amorphous Silicon and Germanium // Reference Module in Materials Science and Materials Engineering. N.Y.: Elsevier, 2016. P. 24.
- 26. Thommes M. et al. Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution // Pure Appl. Chem. 2015. V. 87. P. 1051–1069.
- 27. ASAP 2020 Accelerated Surface Area and Porosimetry System Operator’s Manual (V4.01. 202-42801-01). 2011. 552 p.
- 28. Korobatova N.M., Koroleva O.N. Effect of the SiO2/GeO2 Ratio in the Na2O–B2O3–SiO2–GeO2 System on the Characteristics of Porous Glasses // Materialia. 2023. V. 27 P. 101669. https://doi.org/10.1016/j.mtla.2022.101669