RAS Chemistry & Material ScienceНеорганические материалы Inorganic Materials

  • ISSN (Print) 0002-337X
  • ISSN (Online) 3034-5588

Effect of Ultrasonic Treatment on the Surface Topography of Quartz Glass

PII
10.31857/S0002337X23030090-1
DOI
10.31857/S0002337X23030090
Publication type
Status
Published
Authors
Volume/ Edition
Volume 59 / Issue number 3
Pages
317-322
Abstract
This paper presents our results on ultrasound-induced changes in the surface topography of quartz glass studied using the Allan variance method. The use of this method has made it possible to quantitatively assess roughness components corresponding to surface defects of particular size. Prolonged ultrasonic treatment of quartz glass plates at a power density of 10 W/cm2 has been shown to cause significant changes in surface roughness: the profile height due to small surface defects, 0.125 μm in size, increased by about 40% and the one due to large defects (12 μm) decreased by about 30%. The observed changes in surface topography seem to be related to cavitation destruction of large surface defects by local cumulative jets.
Keywords
ультразвук кварцевое стекло поверхность
Date of publication
14.09.2025
Year of publication
2025
Number of purchasers
0
Views
5

References

  1. 1. Bu X., Alheshibri M. The Effect of Ultrasound on Bulk and Surface Nanobubbles: A Review of the Current Status // Ultrason. Sonochem. 2021. V. 76. P. 105629. https://doi.org/10.1016/j.ultsonch.2021.105629
  2. 2. Kruszelnicki M., Hassanzadeh A., Legawiec K.J., Polowczyk I., Kowalczuk P.B. Effect of Ultrasound Pre-Treatment on Carbonaceous Copper-Bearing Shale Flotation // Ultrason. Sonochem. 2022. V. 84. P. 105962. https://doi.org/10.1016/j.ultsonch.2022.105962
  3. 3. Lyubimova T., Rybkin K., Oscar Fattalov O., Kuchinskiy M., Filippov L. Experimental Study of Temporal Dynamics of Cavitation Bubbles Selectively Attached to the Solid Surfaces of Different Hydrophobicity under the Action of Ultrasound // Ultrasonics. 2021. V. 117. P. 106516. https://doi.org/10.1016/j.ultras.2021.106516
  4. 4. Novikova L., Ayrault P., Fontaine C., Chatel G., Jérôme F., Belchinskaya L. Effect of Low Frequency Ultrasound on the Surface Properties of Natural Aluminosilicates // Ultrason. Sonochem. 2016. V. 31. P. 598–609. https://doi.org/10.1016/j.ultsonch.2016.02.014
  5. 5. Lee J., Yasui K., Ashokkumar M., Kentish S.E. Quantification of Cavitation Activity by Sonoluminescence to Study the Sonocrystallization Process under Different Ultrasound Parameters // Cryst. Growth. Des. 2018. V. 18. P. 5108–5115. https://doi.org/10.1021/acs.cgd.8b00547
  6. 6. Аганин А.А., Гусева Т.С., Косолапова Л.А., Малахов В.Г. Динамика пузырька и импульсное нагружение твердой поверхности при акустическом воздействии // Уч. зап. Казан. ун-та. Сер. физ.-мат. науки. 2021. Т. 163. С. 31–47. https://doi.org/10.26907/2541-7746.2021.1.31-47
  7. 7. Аганин А.А., Косолапова Л.А., Малахов В.Г. Динамика пузырька газа в жидкости вблизи твердой поверхности // Уч. зап. Казан. ун-та. Сер. физ.-мат. науки. 2018. Т. 160. Вып. 1. С. 154–164.
  8. 8. Шероховатость поверхности. Параметры и характеристики. ГОСТ 2789-73. Стандартинформ. 2006.
  9. 9. Айман О. Динамика формирования поверхностной шероховатости при обработке свободным абразивом // Дис. … к.т.н. 05.11.07. С-П.: Университет ИТМО, 2005. 131 с.
  10. 10. Miller P.E., Suratwala T.I., Wong L.L., Feit M.D., Menapace J.A., Davis P.J., Steele R.A. The Distribution of Subsurface Damage in Fused Silica // Laser-Induced Damage Opt. Mater. 2005. V. 5991. P. 599101. https://doi.org/10.1117/12.638821
  11. 11. Patrikar R.M. Modeling and Simulation of Surface Roughness // Appl. Surf. Sci. 2004. V. 228. № 1–4. P. 213–220. https://doi.org/10.1016/j.apsusc.2004.01.010
  12. 12. Pfeifer P. Fractal Dimension as Working Tool for Surface-roughness Problems //Appl. Surf. Sci. 1984. V. 18. № 1–2. P. 146–164.
  13. 13. Jahn R., Truckenbrodt H. A Simple Fractal Analysis Method of the Surface Roughness // J. Mater. Process. Technol. 2004. V. 145. № 1. P. 40–45. https://doi.org/10.1016/S0924-0136 (03)00860-4
  14. 14. Панасюк Г.П., Козерожец И.В., Ворошилов И.Л., Ивакин Ю.Д., Привалов В.И., Данчевская М.Н. Формы воды на поверхности и в объеме диоксида кремния // Журн. неорган. химии. 2021. Т. 66. № 5. С. 623–630. https://doi.org/10.31857/S0044457X21050123
  15. 15. Banes J.A. Characterization of Frequency Stability // IEEE Trans. Instrum. Meas. 1971. IM-20. № 2. P. 105–120.
  16. 16. Zhou D., Xu P., Gu Q. Stochastic Nested Variance Reduction for Nonconvex Optimization // J. Mach. Learn. Res. 2020. V. 21. № 1. P. 4130–4192.
  17. 17. Ma Y., Hu Y., Qiao S., He Y., Tittel F.K. Trace Gas Sensing Based on Multi-Quartz-Enhanced Photothermal Spectroscopy // Photoacoustics. 2020. V. 20. P. 100206. https://doi.org/10.1016/j.pacs.2020.100206
  18. 18. Wang P., Luan C-Y., Qiao M., Um M., Zhang J. Single Ion Qubit with Estimated Coherence Time Exceeding One Hour // Nature Commin. 2021. V. 12. 233. https://doi.org/10.1038/s41467-020-20330-w
  19. 19. ALAMATH. Allan Variance Software. URL: http://www.alavar.org/.
  20. 20. Флинн Г. Физика акустической кавитации в жидкостях // Физическая акустика / Под ред. Мэзона У. М.: Мир, 1967. Т. 1. С. 7–138.
  21. 21. Нумачи Ф. Экспериментальное исследование кавитации, возбуждаемой ультразвуком // Труды американского общества Инженеров механиков. Теоретические основы инженерных расчетов. Сер.Д. 1965. № 4. С. 128–139.
  22. 22. Kornfeld M., Suvorov L. On the Destructive Action of Cavitation // J. Appl. Phys. 1944. V. 15. № 3. P. 495–497.
  23. 23. Peng C., Tian S., Li G., Wei M. Enhancement of Cavitation Intensity and Erosion Ability of Submerged Cavitation Jet by Adding Micro-Particles // Ocean Eng. 2020. V. 209. P. 107516. https://doi.org/10.1016/j.oceaneng.2020.107516
  24. 24. Tan K.L., Yeo S.H. Bubble Dynamics and Cavitation Intensity in Milli-Scale Channels under an Ultrasonic Horn // Ultrason. Sonochem. 2019. V. 58. P. 104666. https://doi.org/10.1016/j.ultsonch.2019.104666
  25. 25. Roylance D. Introduction to Fracture Mechanics // URL: www.pharmacoengineering.com/wp-content/upload/ 2018/03/MIT3_11F99_frac.pdf
  26. 26. Ma G., Xia W., Xie G., Peng Y. Ultrasound-Assisted Detachment Behavior of Glass Beads and Fragments from a Fixed Bubble //Powder Technol. 2019. V. 355. P. 611–616. https://doi.org/10.1016/j.powtec.2019.07.092
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library